Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Gastrodia elata polysaccharides (GEPs) have garnered attention due to their various bioactivities; however, their current extraction yield is low, limiting widespread application. This study employed ultrasonic enzyme-assisted deep eutectic solvent (DES) extraction to enhance efficiency and compared the physicochemical properties, structure, and antioxidant activity of the polysaccharides with those obtained by traditional hot water extraction. Additionally, density functional theory (DFT) was used to explore the DES14 extraction mechanism. Results indicated that the extraction yield from the ultrasonic enzyme-assisted DES14 method (25.22 %) was 3.11 times higher than that of the hot water method (8.11 %), and the molecular weight was 0.21 times. Furthermore, the polysaccharides extracted by this method exhibited superior antioxidant activity, effectively reducing malondialdehyde and reactive oxygen species accumulation, while enhancing antioxidant enzyme activity to combat oxidative stress. Both polysaccharides were α-glucans linked by 4-O-D-Glcp without triple helical structures. DFT analysis demonstrated that the binding energy of DES14 with GEPs was significantly higher than with water, enhancing GEPs solubility through hydrogen bond network formation, thereby notably improving extraction yield. This study provides an efficient method for extracting natural plant polysaccharides and a theoretical basis for GEPs application in the food industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145537 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2025.107383 | DOI Listing |