Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Employing a whole-brain (WB) mask as a region of interest for extracting radiomic features is a feasible, albeit less common, approach in neuro-oncology research. This study aims to evaluate the relationship between WB radiomic features, derived from various neuroimaging modalities in patients with gliomas, and some key baseline characteristics of patients and tumors such as sex, histological tumor type, WHO Grade (2021), IDH1 mutation status, necrosis lesions, contrast enhancement, T/N peak value and metabolic tumor volume. Forty-one patients (average age 50 ± 15 years, 21 females and 20 males) with supratentorial glial tumors were enrolled in this study. A total of 38,720 radiomic features were extracted. Cluster analysis revealed that whole-brain images of biologically different tumors could be distinguished to a certain extent based on their imaging biomarkers. Machine learning capabilities to detect image properties like contrast-enhanced or necrotic zones validated radiomic features in objectifying image semantics. Furthermore, the predictive capability of imaging biomarkers in determining tumor histology, grade and mutation type underscores their diagnostic potential. Whole-brain radiomics using multimodal neuroimaging data appeared to be informative in neuro-oncology, making research in this area well justified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI250403 | DOI Listing |