A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Residual self-attention vision transformer for detecting acquired vitelliform lesions and age-related macular drusen. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal diseases recognition is still a challenging task. Many deep learning classification methods and their modifications have been developed for medical imaging. Recently, Vision Transformers (ViT) have been applied for classification of retinal diseases with great success. Therefore, in this study a novel method was proposed, the Residual Self-Attention Vision Transformer (RS-A ViT), for automatic detection of acquired vitelliform lesions (AVL), macular drusen as well as distinguishing them from healthy cases. The Residual Self-Attention module instead of Self-Attention was applied in order to improve model's performance. The new tool outperforms the classical deep learning methods, like EfficientNet, InceptionV3, ResNet50 and VGG16. The RS-A ViT method also exceeds the ViT algorithm, reaching 96.62%. For the purpose of this research a new dataset was created that combines AVL data gathered from two research centers and drusen as well as normal cases from the OCT dataset. The augmentation methods were applied in order to enlarge the samples. The Grad-CAM interpretability method indicated that this model analyses the appropriate areas in optical coherence tomography images in order to detect retinal diseases. The results proved that the presented RS-A ViT model has a great potential in classification retinal disorders with high accuracy and thus may be applied as a supportive tool for ophthalmologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084408PMC
http://dx.doi.org/10.1038/s41598-025-02299-yDOI Listing

Publication Analysis

Top Keywords

residual self-attention
12
retinal diseases
12
rs-a vit
12
self-attention vision
8
vision transformer
8
acquired vitelliform
8
vitelliform lesions
8
macular drusen
8
deep learning
8
classification retinal
8

Similar Publications