The application of machine learning in clinical microbiology and infectious diseases.

Front Cell Infect Microbiol

Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the development of artificial intelligence(AI) in computer science and statistics, it has been further applied to the medical field. These applications include the management of infectious diseases, in which machine learning has created inroads in clinical microbiology, radiology, genomics, and the analysis of electronic health record data. Especially, the role of machine learning in microbiology has gradually become prominent, and it is used in etiological diagnosis, prediction of antibiotic resistance, association between human microbiome characteristics and complex host diseases, prognosis judgment, and prevention and control of infectious diseases. Machine learning in the field of microbiology mainly adopts supervised learning and unsupervised learning, involving algorithms from classification and regression to clustering and dimensionality reduction. This Review explains crucial concepts in machine learning for unfamiliar readers, describes machine learning's current applications in clinical microbiology and infectious diseases, and summarizes important approaches clinicians must be aware of when evaluating research using machine learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078339PMC
http://dx.doi.org/10.3389/fcimb.2025.1545646DOI Listing

Publication Analysis

Top Keywords

machine learning
24
infectious diseases
16
clinical microbiology
12
learning
8
microbiology infectious
8
diseases machine
8
machine
6
microbiology
5
diseases
5
application machine
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.

View Article and Find Full Text PDF