Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surgical safety has emerged as a significant public health concern. Ureteral injury (UI) is one of the most common forms of iatrogenic urological issues, lacking non-invasive prevention strategies. In this context, computer-assisted technologies offer a promising solution for enhancing intra-operative safety. This paper presents an in-vivo study focused on evaluating the feasibility of using an augmented reality (AR) surgical navigation system (EVA) for intra-operative ureteral identification on an animal model. An experienced surgeon performed a technical assessment of the system. The clinical evaluation was conducted by four general surgeons tasked with identifying the left or right ureter, both with and without EVA. The technical assessment highlighted that EVA is easily integrable with operating room instruments, achieving a calibration accuracy of [Formula: see text], and the virtual ureter effectively overlapping with the real ureter. The questionnaires indicated that surgeons appreciated EVA, with a [Formula: see text]. The perceived mental demand, task complexity, and distractions were lower when using the EVA system. Future work will focus on increasing the number of subjects and exploring the efficacy of the system on other clinical tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081927PMC
http://dx.doi.org/10.1038/s41598-025-00138-8DOI Listing

Publication Analysis

Top Keywords

surgical navigation
8
navigation system
8
ureteral identification
8
technical assessment
8
system clinical
8
[formula text]
8
system
5
eva
5
evaluating eva
4
eva surgical
4

Similar Publications

The integration of robotic platforms in breast oncology has witnessed substantial expansion, fueled by their inherent advantages in minimally invasive access and enhanced intraoperative maneuverability. Most of the robotic-assisted breast surgery has been performed using multi-arm robots. However, the implementation of single-port robotic (SPr) systems in mammary interventions continues to undergo rigorous clinical evaluation, particularly regarding long-term oncological safety and cost-effectiveness metrics.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted right S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Thoracic Surgery, New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as the pioneering approach for the most complex of pulmonary resections, offering high-definition 3D visualization, enhanced instrument augmentation and tremor-free tissue articulation. Compared with open thoracotomy, the robotic platform is associated with reduced peri-operative morbidity, shorter hospital admissions and faster patient recovery. However, sublobar resections such as segmentectomies remain anatomically and technically demanding, particularly in the context of resecting multiple segments, as showcased in this right S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Purpose: To compare the accuracy of static guided surgery using a pilot drill guide and dynamic guided surgery for dental implant placement.

Materials And Methods: Partially edentulous adult patients requiring implant placement were randomly assigned to either the static guided surgery group using a pilot drill guide or the dynamic guided surgery group. Digital implant planning was conducted using intraoral scans and CBCT with planning software to determine the optimal prosthetic position.

View Article and Find Full Text PDF

Effect of Drill Handle Force Applied to Digital Surgical Guides on Implant Deviation: An In Vitro Study.

Clin Implant Dent Relat Res

October 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Introduction: This in vitro study evaluated how different forces applied to the dental drill handle during static computer-assisted implant surgery influence surgical guide deformation and implant placement accuracy.

Methods: Twenty-four virtual implants were divided into six groups (0-10 N, in 2 N increments). Surgical guides were scanned under loaded conditions, and deviations were quantified by superimposition with the baseline model.

View Article and Find Full Text PDF