98%
921
2 minutes
20
Heavy metal pollution poses significant ecological and public health risks, and surface display engineering shows promise for bioremediation in this area. Although anoxygenic photosynthetic purple nonsulfur bacteria (PNSB) have been effectively applied to degrade pollutants due to their metabolic versatility, the use of surface display technology in PNSB remains very limited. In this study, we constructed a surface display system using Rhodopseudomonas palustris CGA009 as the host. The metal-binding protein CadR was fused with outer membrane protein A (OmpA) and expressed in CGA009. SDS-PAGE and immunofluorescence analysis identified the successful expression of the fusion protein on the cell surface. In addition, we used flow cytometry to explore the enhancement effects of linker peptides and different promoters on surface display efficiency under different light intensities. The surface display system enhanced the heavy metal resistance of the host bacteria, and the maximum removal rate of Cd reached 95.6 %. By means of Langmuir isotherm analysis, the maximum biosorption capacity of the system for Cd is 101.11 mg/g. The system demonstrates feasibility for application in complex real-world environmental samples. The presence of various metal ions does not interfere with the system's specific adsorption of Cd²⁺. It can stably maintain an adsorption efficiency of over 80 % under conditions of pH 6-8, temperatures of 20-35°C, and light intensity of 1000-6000 lux. Additionally, the system achieves a removal efficiency of 94.3 % in Cd wastewater. In summary, this study provides a reference for the development of photosynthetic bacterial surface display systems and provides an advanced bioremediation strategy for heavy metal contaminated wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.138592 | DOI Listing |
Nanoscale Horiz
September 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Nanostructuring, which shortens lithium-ion diffusion lengths, can help facilitate pseudocapacitive behavior in some battery materials. Here, nanostructured LiNiCoAlO (NCA), with porosity and decreased crystallite size compared to commercial bulk NCA, was synthesized using a colloidal polymer template. Small particles (∼150 nm) were obtained using rapid thermal annealing (RTA), while medium particles (∼300 nm) were obtained with conventional heating.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Türkiye.
A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).
View Article and Find Full Text PDFChemistryOpen
September 2025
CMC UMR 7140, CNRS, Université de Strasbourg, Strasbourg, F-67000, France.
Two series of robust pillared metal-organic frameworks (MOFs) are obtained under solvothermal conditions by combining a metal salt with either Hbpdc, biphenyl-4,4'-dicarboxylic acid, or Hpda, 1,4-phenylenediacrylic acid, forming 2D layers, which are pillared by L, an alloxazine derivative of 1,4-di(pyridin-4-yl)benzene using a one-pot three-component strategy. Crystallographic studies reveal the formation of two isomorphous series of compounds, namely 1-M (from Hbpdc with M = Co, Ni, Cu, and Zn) and 2-M (from Hpda with M = Co or Cu). The multifunctional compounds have high decomposition temperatures, and their sorption properties were measured, revealing relatively low surface areas.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.
The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.
View Article and Find Full Text PDFPLoS One
September 2025
School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.
The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.
View Article and Find Full Text PDF