A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring the Feasibility of Bidirectional Spinal Cord Machine Interface Through Sensing and Stimulation of Axonal Bundles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord injury (SCI) patients experience long-term deficits in motor and sensory functions. While brain-machine interface (BMI) has shown great promise for restoring neurological functions after SCI, spinal cord-machine interface (SCMI) offers unique advantages, such as more defined somatotopy and the compact organization of neural elements in the spinal cord. In the current study, we aim to demonstrate the feasibility of sensing and evoking compound action potentials (CAPs) via electrode implantation in spinal cord axonal bundles, an essential prerequisite for advancing SCMI development. To do so, we designed microelectrode arrays (MEA) optimized for recording and stimulation in the spinal cord. For sensory mapping, the MEAs were inserted into the lumbar dorsal column (i.e., the fasciculus gracilis) to determine somatotopic representations corresponding to tactile stimulation across lower body regions and assess proprioceptive signals with varying hip positions. For stimulations, at the L3 level, we delivered electrical pulses both rostrally, along ascending afferent tracts (dorsal column), and caudally, down descending corticospinal tract. We successfully captured axonal CAPs from the dorsal columns with high spatial precision that corresponded to known dermatomal somatotopy. Proprioceptive changes produced by abduction at the hip resulted in modulation of discharge frequency in the dorsal column axons. We demonstrated that stimulation pulses emitted by a caudally placed electrode could be propagated up the ascending fibers and be intercepted by a rostrally placed electrode array along the same axonal tracts. We also confirmed that electrical pulses can be directed down descending corticospinal tracts resulting in specific activations of lower limb muscles. These findings set a critical groundwork for developing closed-loop, bidirectional SCMI systems capable of sensing and modulating spinal cord activity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2025.3570324DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
dorsal column
12
axonal bundles
8
electrical pulses
8
descending corticospinal
8
spinal
7
cord
6
exploring feasibility
4
feasibility bidirectional
4
bidirectional spinal
4

Similar Publications