Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Rising temperatures increasingly expose beef cattle to heat stress, reducing productivity and welfare, especially in tropical climates. Crossbreeding t and i has emerged as a critical strategy to balance the production efficiency of taurine breeds with the superior thermotolerance of indicine breeds. Understanding the genetic architecture of thermotolerance traits is essential for improving heat resilience in beef cattle populations.

Methods: Phenotypes for short hair length (SHL, undercoat) and long hair length (LHL, topcoat), sweat gland area (SGA), and thermal stress slope (TSS), a measure of body temperature fluctuations under heat stress, were collected from 3,962 crossbred Angus-Brahman heifers. Heifers were genotyped, and breed-of-origin (BOA) for each marker was determined using LAMP-LD. Genome-wide association studies were conducted using SNP-only, BOA-only, and integrated SNP + BOA models to identify quantitative trait loci (QTLs) associated with thermotolerance traits. Genes in QTL regions were used for functional enrichment analysis using Gene Ontology (GO) and KEGG pathways.

Results: Significant QTLs for SHL and LHL were identified on BTA20, overlapping the gene. A QTL on BTA19 for SHL and LHL was driven solely by BOA effects, with Brahman BOA associated with shorter hair lengths. For SGA, six suggestive QTLs were detected, predominantly linked to Angus-derived alleles associated with reduced sweat gland area. For TSS, a significant QTL on BTA1 exhibited a strong BOA effect, with Angus BOA associated with higher TSS values, indicative of reduced thermoregulatory efficiency. Integrated SNP + BOA models provided greater resolution and revealed novel QTLs compared to single-effect models. Functional enrichment using GO and KEGG identified MAPK and estrogen signaling pathways in both LHL and TSS, indicating potential overlap in the biological processes influencing hair length and thermoregulation.

Conclusion: This study demonstrates the value of integrating BOA with SNP-based models to uncover the genetic architecture of thermotolerance traits in beef cattle. By better capturing breed-specific contributions, these findings enhance our understanding of thermoregulation and provide actionable insights for improving heat resilience in cattle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075150PMC
http://dx.doi.org/10.3389/fgene.2025.1576966DOI Listing

Publication Analysis

Top Keywords

thermotolerance traits
16
beef cattle
16
genetic architecture
12
architecture thermotolerance
12
hair length
12
traits beef
8
heat stress
8
improving heat
8
heat resilience
8
sweat gland
8

Similar Publications

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

Identification and Evaluation of Thermotolerance in Broccoli Seedlings Based on a Multi-Trait Phenotyping System.

Biology (Basel)

August 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

To establish a systematic approach for evaluating heat tolerance at the seedling stage in broccoli, we investigated 14 representative cultivars cultivated in China. Physiological indicators such as electrical conductivity, malondialdehyde, proline, and chlorophyll content were measured before and after heat stress, alongside phenotypic scoring of heat injury, to characterize the differential thermotolerance among genotypes. The results indicated that significant differences ( < 0.

View Article and Find Full Text PDF

Local Adaptation Drives Leaf Thermoregulation in Tropical Rainforest Trees.

Glob Chang Biol

September 2025

College of Science and Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia.

Tropical forests play a critical role in biodiversity, carbon sequestration, and climate regulation, but are increasingly affected by heatwaves and droughts. Vulnerability to warming may vary within and between species because of phenotypic divergence. Leaf trait variation can affect leaf operating temperatures-a phenomenon termed 'limited homeothermy' when it helps avoid heat damage in warmer conditions.

View Article and Find Full Text PDF

Background: Escalating global temperatures pose an ongoing threat to cotton production by disrupting essential morphological, physiological, and metabolic processes during early plant development. These early stages are critical for crop establishment, yet the genetic basis of heat tolerance at this phase remains insufficiently characterized. Therefore, advancing our understanding of early-stage responses is essential for the development of heat-tolerant genotypes.

View Article and Find Full Text PDF

Integrated transcriptomic and metabolomic analysis unveils heat-tolerance-associated flavonoid metabolites and genes in the rice rel1-D mutant.

BMC Genomics

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro‑Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.

Background: Plants have evolved the ability to produce specialized metabolites as a defense mechanism against biotic and abiotic stressors, with flavonoid-mediated defense responses playing a crucial role in this process. Diverse flavonoids are present in various rice-grown resources, and they confer tolerance to different environmental conditions, including high temperature stress. Elucidating the differences in these flavonoids is essential for breeding improved rice varieties with enhanced tolerance to adverse environments.

View Article and Find Full Text PDF