Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tooth extraction simulation with force feedback can provide a valuable training tool for dental students, familiarizing them with the detailed motion and force patterns involved in this procedure. This simulation encounters two major challenges - replicating the forceps' 7-DoF motion and accurately simulating the distinct phases of tooth extraction. This paper presents a comprehensive haptic simulation framework for simulating tooth extraction with force feedback, combining both hardware and software solutions. A pivotal feature of this system is the 7-DoF haptic rendering algorithm capable of simulating the 7-DoF motion of forceps. Additionally, a haptic handle resembling the extraction forceps and offering robust connectivity is developed. Furthermore, a multi-phase tooth extraction framework is proposed to simulate the entire tooth extraction process. This framework incorporates physical models to emulate the haptic characteristics of different extraction phases and includes predefined entry criteria for each phase to achieve accurate identification and seamless transitions. The system's effectiveness is validated through objective and subjective experiments, confirming its ability to faithfully replicate the unique haptic features of each extraction phase. Feedback from dental novices and experts indicates that this system could make a significant contribution to tooth extraction training, providing distinct advantages over traditional oral model practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TOH.2025.3569724 | DOI Listing |