A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physically Cross-Linked Silk Fibroin Hydrogel with Rapid Sol-Gel Transition and Enhanced Mechanical Performance. | LitMetric

Physically Cross-Linked Silk Fibroin Hydrogel with Rapid Sol-Gel Transition and Enhanced Mechanical Performance.

Macromol Rapid Commun

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It remains a great challenge to fabricate physically cross-linked silk fibroin (SF) hydrogels with rapid gelation and robust mechanical properties. In this study, a novel SF hydrogel is obtained by synergistically modulating the SF molecular weight (MW) and the freeze-inducing process, avoiding the use of any exterior additives. First, the effects of MW on the self-assembly behaviors of SF are investigated under physiological temperature. The results demonstrate that high MW SF derived from papain degumming (PSF) facilitates the sol-gel transition with increasing β-sheet content, and contributed to the construction of the hierarchical micro-nanofiber structure. Subsequently, cryo-concentration treatment is applied to further accelerate the gelation process. The resultant PSF (F-PSF) exhibits rapid sol-gel transition (within 1 h), a high compressive modulus (54.2 ± 3.7 kPa), and a high storage modulus (up to 247.9 kPa), which are superior to traditional physically cross-linked SF hydrogels. The relatively low β-sheet content and dense structure endow the F-PSF hydrogels with excellent mechanical flexibility, physiological environmental stability, and long-term mechanical stability. In vitro cellular experiments show that F-PSF hydrogels are beneficial to cell proliferation and spreading. These attractive features enable the physically cross-linked SF hydrogels to be promising for tissue engineering and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202401016DOI Listing

Publication Analysis

Top Keywords

physically cross-linked
16
sol-gel transition
12
cross-linked silk
8
silk fibroin
8
rapid sol-gel
8
β-sheet content
8
cross-linked hydrogels
8
f-psf hydrogels
8
hydrogels
5
physically
4

Similar Publications