Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Induced pluripotent stem cells (iPSCs) share transcriptomic similarities with cancer cells and express tumor-specific and tumor-associated antigens, highlighting their potential as cancer vaccines. Our previous study demonstrated that an iPSC-based vaccine effectively prevented tumor growth in various mouse models, including melanoma, breast, lung, and pancreatic cancers. However, the underlying mechanisms and the therapeutic efficacy of the iPSC-based vaccine remain unclear. Colorectal cancer (CRC), the third most common cancer with a rising incidence worldwide, presents an urgent need for novel strategies to prevent and treat CRC. Allograft mouse models were established to evaluate the antitumor effects of the iPSC-based vaccine. CpG oligonucleotide (ODN) 1826 served as a vaccine adjuvant. Bulk RNA-Sequencing (RNA-Seq) and the Microenvironment Cell Population counter (MCP-Counter) algorithm were performed to analyze transcriptomic changes. Liquid chromatography-mass spectrometry (LC-MS) combined with in silico strategies was employed to identify potential antigen proteins. Chinese Hamster Ovary (CHO-K1) models were utilized to express candidate neoantigen proteins. Mouse bone marrow-derived dendritic cells (BMDCs) were used to investigate T cell priming in response to iPSC-associated proteins. Immune cell profiles were characterized by flow cytometry. The combination of CpG and iPSC vaccination demonstrated both prophylactic and therapeutic efficacy in reducing tumor growth in CRC mouse models. Vaccination significantly increased CD8 T cell infiltration within tumor regions, while T cell depletion abrogated the antitumor effects, underscoring the critical role of T cells in mediating these responses. Proteomic analysis identified two iPSC-associated proteins, heterogeneous nuclear ribonucleoprotein U (HNRNPU) and nucleolin (NCL), as key drivers of the observed immune responses. Vaccination with HNRNPU or NCL, in combination with CpG, enhanced dendritic cell activation, induced antigen-specific CD8 T cell cytotoxicity, and promoted the formation of central memory CD8 T cells, collectively leading to significant CRC tumor shrinkage. Our findings reveal potential mechanisms underlying the efficacy of iPSC-based vaccines in cancer immunotherapy. Additionally, HNRNPU and NCL were identified as key antigen proteins in iPSC, demonstrating promise for the development of peptide-based vaccines for both the prevention and treatment of CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068288PMC
http://dx.doi.org/10.7150/thno.111400DOI Listing

Publication Analysis

Top Keywords

ipsc-based vaccine
12
mouse models
12
prophylactic therapeutic
8
ipsc-based vaccines
8
colorectal cancer
8
tumor growth
8
therapeutic efficacy
8
efficacy ipsc-based
8
antitumor effects
8
antigen proteins
8

Similar Publications

Human iPSC-based breast cancer model identifies S100P-dependent cancer stemness induced by mutation.

Sci Adv

July 2025

Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.

Breast cancer is the most common malignancy in females and remains the leading cause of cancer-related deaths for women worldwide. The cellular and molecular basis of breast tumorigenesis is not completely understood partly due to the lack of human research models which simulate the development of breast cancer. Here, we developed a method for generating functional mammary-like cells (MCs) from human-induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Optogenetic-Controlled iPSC-Based Vaccines for Prophylactic and Therapeutic Tumor Suppression in Mice.

Adv Sci (Weinh)

July 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.

Induced pluripotent stem cells (iPSCs) share similar cellular features and various antigens profiles with cancer cells. Leveraging these characteristics, iPSCs hold great promise for developing wide-spectrum vaccines against cancers. In practice, iPSCs are typically combined with immune adjuvants to enhance antitumor immune responses; however, traditional adjuvants lack controllability and can induce systemic toxicity, which has limited their broad application.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) share transcriptomic similarities with cancer cells and express tumor-specific and tumor-associated antigens, highlighting their potential as cancer vaccines. Our previous study demonstrated that an iPSC-based vaccine effectively prevented tumor growth in various mouse models, including melanoma, breast, lung, and pancreatic cancers. However, the underlying mechanisms and the therapeutic efficacy of the iPSC-based vaccine remain unclear.

View Article and Find Full Text PDF

Cancer vaccines are a promising immunotherapeutic modality that function by training the immune system to recognize and destroy malignant cells. As tumor-specific and tumor-associated antigens generally cannot be identified until after a tumor has already been established, these vaccines must be applied therapeutically when strong immunosuppressive mechanisms are already in place. Building upon previous work using cell membrane coating nanotechnology, the development of a broad-spectrum prophylactic cancer nanovaccine that consists of induced pluripotent stem cell (iPSC) membrane coated around an adjuvant-loaded nanoparticle core is shown.

View Article and Find Full Text PDF

Background: Since RNA sequencing has shown that induced pluripotent stem cells (iPSCs) share a common antigen profile with tumor cells, cancer vaccines that focus on iPSCs have made promising progress in recent years. Previously, we showed that iPSCs derived from leukemic cells of patients with primary T cell acute lymphoblastic leukemia (T-ALL) have a gene expression profile similar to that of T-ALL cell lines.

Methods: Mice with T-ALL were treated with dendritic and T (DC-T) cells loaded with intact and complete antigens from T-ALL-derived iPSCs (T-ALL-iPSCs).

View Article and Find Full Text PDF