Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Emerging deep-learning-based CT denoising techniques have the potential to improve diagnostic image quality in low-dose CT exams. However, aggressive radiation dose reduction and the intrinsic uncertainty in convolutional neural network (CNN) outputs are detrimental to detecting critical lesions (e.g., liver metastases) in CNN-denoised images. To tackle these issues, we characterized CNN output distribution via total uncertainty (i.e., data + model uncertainties) and predictive mean. Local mean-uncertainty-ratio (MUR) was calculated to detect highly unreliable regions in the denoised images. A MUR-driven adaptive local fusion (ALF) process was developed to adaptively merge local predictive means with the original noisy images, thereby improving image robustness. This process was incorporated into a previously validated deep-learning model observer to quantify liver metastasis detectability, using area under localization receiver operating characteristic curve (LAUC) as the figure-of-merit. For proof-of-concept, the proposed method was established and validated for a ResNet-based CT denoising method. A recent patient abdominal CT dataset was used in validation, involving 3 lesion sizes (7, 9, and 11 mm), 3 lesion contrasts (15, 20, and 25 HU), and 3 dose levels (25%, 50%, and 100% dose). Visual inspection and quantitative analyses were conducted. Statistical significance was tested. Total uncertainty at lesions and liver background generally increased as radiation dose decreased. With fixed dose, lesion-wise MUR showed no dependency on lesion size or contrast, but exhibited large variance across lesion locations (MUR range ~0.7 to 19). Compared to original ResNet-based denoising, the MUR-driven ALF consistently improved lesion detectability in challenging conditions such as lower dose, smaller lesion size, or lower contrast (range of absolute gain in LAUC: 0.04 to 0.1; P-value 0.008). The proposed method has the potential to improve reliability of deep-learning CT denoising and enhance lesion detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070600 | PMC |
http://dx.doi.org/10.1117/12.3047080 | DOI Listing |