Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electrode designs and materials have become an increasingly important performance driver for microelectrode arrays, which are among the essential tools for cellular electrophysiology. Ongoing works have continuously innovated over a diverse range of electrode shapes, sizes, and materials. The large design and fabrication parameter space represents rich opportunities for optimizing performance and functionalities as well as a challenge for electrode developers due to a lack of predictive simulation software to aid design works. Electrode prototypes often need to be fabricated, empirically evaluated, and iteratively optimized at significant cost. Efficient hardware testing solutions to aid the development of new electrodes, especially at an early stage when the number of candidate designs is still high, are therefore increasingly important. Here, we propose and implement a cost-effective testbed platform, which is aimed at obtaining first-order characteristics from electrode prototypes to inform early-stage screening and refinement. Upon testing with microfabricated electrodes, the platform was shown to achieve an impedance measurement accuracy comparable to commercial equipment and effectively recorded extracellular action potentials of in vitro rat cortical neurons. By providing relevant electrode testing at a significantly lower cost, in a more compact form, and with greater ease of assembly, compared to existing hardware solutions, the presented testbed can meaningfully lower entry barriers for the development of new array-based electrophysiological microelectrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074398 | PMC |
http://dx.doi.org/10.3390/s25092874 | DOI Listing |