98%
921
2 minutes
20
Ensuring secure and efficient water level monitoring is critical for the intelligent management of hydropower plants, especially in challenging indoor environments. Existing methods, which are tailored for open areas with optimal conditions (adequate lighting, absence of debris interference, etc.), frequently falter in scenarios characterized by poor lighting, water vapor, and confined spaces. To address this challenge, this study introduces a robust indoor water level monitoring framework specifically for hydropower plants. This framework integrates a temporal super-resolution technique with an improved Yolov5 model. Specifically, to enhance the quality of indoor monitoring images, we propose a temporal super-resolution enhancement module. This module processes low-resolution water-level images to generate high-resolution outputs, thereby enabling reliable detection even in suboptimal conditions. Furthermore, unlike existing complex model-based approaches, our enhanced, lightweight Yolov5 model, featuring a small-scale feature mapping branch, ensures real-time monitoring and accurate detection across a variety of conditions, including daytime, nighttime, misty conditions, and wet surfaces. Experimental evaluations demonstrate the framework's high accuracy, reliability, and operational efficiency, with recognition speeds reaching O(n). This approach is suitable for deployment in emerging intelligent systems, such as HT-for-Web analysis software 0.2.3 and warning platforms, providing vital support for hydropower plant security and emergency management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074277 | PMC |
http://dx.doi.org/10.3390/s25092835 | DOI Listing |
J Trace Elem Med Biol
September 2025
Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland. Electronic address:
Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.
View Article and Find Full Text PDFPLoS One
September 2025
The Institute of Port Information Digitalization, China Liaoning Port Group Co. Ltd., Dalian, Liaoning, China.
Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.
Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.
Soc Work Public Health
September 2025
School of Social Work, Jackson State University, Jackson, Mississippi, USA.
In 2021, Jackson, Mississippi, received national attention after a winter storm caused the failure of operations at the city's largest water treatment facility. Years of neglect to a crumbling infrastructure triggered the Jackson water crisis, leaving residents without clean and reliable access to water. Predating any one administration, Black and low-income residents had long raised concerns about excessive water bills, broken water mains, poor water quality, and deterioration of the city's water system.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Colloid and Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, China.
In this paper, a phosphate buffer (0.10 M, pH 7.5)--hexadecane bicontinuous microemulsion (BME) stabilized by the nonionic surfactant CE was for the first time used as the medium to investigate its effect on the electrochemical behavior of the cobaltocene redox couple ( (III)/ (II)) as electron mediator and the -mediated electroreduction of coenzyme NAD.
View Article and Find Full Text PDFFoodborne Pathog Dis
September 2025
Public Health Agency of Canada, National Microbiology Laboratory, Guelph, Canada.
is a human-specific protozoan parasite that causes gastrointestinal illness, primarily through the ingestion of contaminated water or fresh produce. This study provides an epidemiological overview of cyclosporiasis in Canada from 2000 to 2022 using data from the Canadian Notifiable Disease Surveillance System, FoodNet Canada, and outbreak investigations. A total of 5337 cases were reported during this period, with the incidence increasing from 0.
View Article and Find Full Text PDF