A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Photocurable Crosslinker from Bio-Based Non-Isocyanate Poly(hydroxyurethane) for Biocompatible Hydrogels. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route with resorcinol-based carbonates. Ring-opening polymerization with dodecanediamine produced BPHU intermediates, which were methacrylated to form photoreactive derivatives (aliphatic MAs and aromatic MAs). Comprehensive characterization, including NMR, GPC, and FTIR, confirmed the successful synthesis. The UV curing of these methacrylated compounds yielded hydrogels with swelling properties. Aliphatic BPHUs achieved a gel content of 91.3% and a swelling of 1057%, demonstrating the flexibility and UV stability suitable for adaptable biomedical applications. Conversely, aromatic BPHUs displayed a gel content of 78.1% and a swelling of 3304%, indicating higher rigidity, which is advantageous for load-bearing uses. Cytotoxicity assessments adhering to the DIN EN ISO 10993-5 standard demonstrated non-cytotoxicity, with an >80% cell viability for both variants. This research underscores the potential of green chemistry in crafting biocompatible, versatile BPHUs, paving the way for eco-friendly materials in implantable medical devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073706PMC
http://dx.doi.org/10.3390/polym17091285DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
gel content
8
photocurable crosslinker
4
crosslinker bio-based
4
bio-based non-isocyanate
4
non-isocyanate polyhydroxyurethane
4
polyhydroxyurethane biocompatible
4
biocompatible hydrogels
4
hydrogels study
4
study explores
4

Similar Publications