Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Essential oils (EOs) are natural substances rich in phenolic compounds with notable antimicrobial and antioxidant properties. However, they present some limitations, such as low stability and bioavailability. Incorporating EOs into polymeric films offers a novel approach to overcome these challenges while enhancing their efficacy. In this study, we produced and thoroughly characterized alginate-based edible films incorporated with five different EOs-rosemary, eucalyptus, oregano, sage, and thyme. This is the first comprehensive investigation to include this diverse range of EOs in alginate films. Their antimicrobial and antioxidant activities were also evaluated. The results demonstrated that alginate films containing EOs exhibited significant bioactive properties. Notably, the film incorporated with oregano EO completely inhibited the growth of all tested bacteria and fungi and showed the highest antioxidant activity. Based on these findings, alginate films containing EOs present promising bioactive potential and could serve as biodegradable alternatives to conventional packaging materials, reducing environmental impact. However, further studies are necessary to assess their safety profile and confirm their viability as replacements for traditional food packaging. Future research should focus on evaluating cytotoxicity, genotoxicity, and the practical application of these films in food matrices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073713 | PMC |
http://dx.doi.org/10.3390/polym17091188 | DOI Listing |