98%
921
2 minutes
20
Magnetic resonance imaging (MRI) often demonstrates alterations following cranial radiotherapy (RT), which may result in clinical symptoms and diagnostic uncertainty, and thus potentially impact treatment decisions. The potential differences in MRI alterations after proton and photon RT, has raised concerns regarding the relative biological effectiveness of proton therapy. To provide an overview of MRI alterations in the brain post-RT and to explore differences between photon and proton RT, a systematic review adhering to the PRISMA guidelines was conducted, focusing on the assessment methods and definitions across studies. A systematic search of three electronic databases was performed using the concepts 'normo-fractionated radiotherapy ', 'MRI alterations' and 'brain, skull base or head and neck tumours in adult and paediatric populations'. Data extraction and quality assessment was performed on articles meeting the predefined criteria by two independent reviewers. Out of 5887 screened studies, 94 met the inclusion criteria. These studies were categorized based on confinement of the MRI alterations to temporal lobe, brainstem, or across the entire brain. Additional subclassification was performed based on MRI sequences evaluated or by the nature of the alterations, with pseudoprogression generally reserved for glioma patients. While many papers exist on MRI alterations in the brain after RT, this review highlights significant inconsistencies in the terminology and definitions, limiting the comparability of findings across studies. Our results highlight the need for and facilitate the development of a standardized framework for describing MRI alterations after RT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2025.110936 | DOI Listing |
Epileptic Disord
September 2025
Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy.
Protein ufymilation is a post-translational modification implicated in the regulation of several cellular processes. Biallelic variants in UBA5 causing a functional alteration of its protein product have been associated with early-onset epileptic encephalopathy 44 (EIEE44), a rare disease for which 28 patients have been described in the literature at present. We here report on the clinical and detailed EEG phenotype of a novel patient affected by EIEE44.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Signal Processing Laboratory (LTS5), École Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland.
Introduction: Absence of language development is a condition encountered across a large range of neurodevelopmental disorders, including a significant proportion of children with autism spectrum disorder. The neurobiological underpinnings of non-verbal ASD (nvASD) remain poorly understood.
Methods: This study employed multimodal MRI to investigate white matter (WM) microstructural abnormalities in nvASD, focusing on language-related pathways.
Biol Psychiatry Glob Open Sci
November 2025
University of Basel, Department of Clinical Research (DKF), University Psychiatric Clinics, Translational Neurosciences, Basel, Switzerland.
Background: The hippocampus plays a critical role in psychosis, with reduced volume observed across the psychosis continuum. These structural changes are associated with cognitive deficits, symptom severity, and increased risk of psychosis progression. Elevated hippocampal perfusion and glutamate/GABA (gamma-aminobutyric acid) imbalance further suggest metabolic dysregulation as a key mechanism.
View Article and Find Full Text PDFCureus
August 2025
Division of Infectious Diseases, Hyogo Prefectural Kobe Children's Hospital, Hyogo, JPN.
Tuberculous meningitis (TBM) is predominantly observed in developing countries but remains relatively rare in developed countries. Therefore, if a clinician does not suspect TBM, its diagnosis may be delayed. Furthermore, drug-induced hepatotoxicity is common and can become severe during TBM treatment.
View Article and Find Full Text PDFCureus
August 2025
Neurological Surgery, Punjab Institute of Neurosciences, Lahore, PAK.
Parvovirus B19 (PVB19) is an infrequent, serious, yet treatable cause of infection in immunocompromised hosts. Neurological manifestations of PVB19 are encephalitis, encephalopathy, meningitis, cerebellar ataxia, transverse myelitis, stroke, and peripheral neuropathy. The objective is to identify the exact clinical and diagnostic features specific to parvovirus B19 encephalitis for the isolation and management of the pathology.
View Article and Find Full Text PDF