A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymer-based nanocomposites have demonstrated significant strategic value in dielectric energy storage systems due to their tunable high energy density and rapid charge-discharge efficiency. Poly(arylene ether nitrile) (PEN), owing to its superior thermal stability, high mechanical strength, chemical corrosion resistance, and outstanding dielectric properties, exhibits distinct advantages in the field of high-performance dielectric energy storage devices. This review focuses on key strategies for enhancing the dielectric energy storage performance of PEN-based composites, emphasizing molecular engineering approaches, microstructural design, the multiscale interface regulation mechanisms within composite systems, and the optimization of the dielectric constant () and breakdown strength () through thermal stretching. Furthermore, the potential of PEN-based polymer composites in energy storage devices is highlighted, and future research directions are proposed, including the establishment of a dynamic balance mechanism between dielectric/insulating properties and the development of novel composite systems that offer both high energy storage density and stability. These advancements will provide the material foundation for the miniaturization and intellectualization of advanced pulse power equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073192PMC
http://dx.doi.org/10.3390/nano15090696DOI Listing

Publication Analysis

Top Keywords

energy storage
24
high energy
12
dielectric energy
12
polyarylene ether
8
ether nitrile
8
storage devices
8
composite systems
8
energy
7
storage
6
dielectric
5

Similar Publications