A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Asymmetric transfer between the learning of the complex stimulus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Perceptual learning of complex stimulus (such as faces or houses) are shown to be specific to the stimulus, indicating the plasticity of the human high-level visual cortex. However, limited understanding exists regarding the plasticity of the representation of complex stimuli in visual working memory (VWM) and its specificity.

Methods: To address this question, we adopted a delayed match-to-sample task to train the working memory for faces and houses. Subjects were trained for 6 days with neutral faces, happy faces, sad faces, and houses in Experiments 1, 2, 3, and 4, respectively.

Results: The results revealed that training significantly increased the sensitivity (d') to discriminate the visual representations in VWM in all four experiments. Furthermore, the learning effects of neutral faces were transferable to emotional faces and vice versa. However, the learning effects of emotional faces exhibited limited transfer to untrained emotional faces. More importantly, the transfer of learning effects between faces and houses was asymmetrical, i.e., only the learning effects of faces could transfer to houses, whereas the reverse was not true.

Discussion: These results highlight distinct cognitive processes underlying the training effects for different stimulus categories and provide valuable insights into the mechanisms of VWM improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066658PMC
http://dx.doi.org/10.3389/fnins.2025.1578862DOI Listing

Publication Analysis

Top Keywords

faces houses
16
learning effects
16
emotional faces
12
faces
11
transfer learning
8
learning complex
8
complex stimulus
8
working memory
8
neutral faces
8
effects faces
8

Similar Publications