Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Perceptual learning of complex stimulus (such as faces or houses) are shown to be specific to the stimulus, indicating the plasticity of the human high-level visual cortex. However, limited understanding exists regarding the plasticity of the representation of complex stimuli in visual working memory (VWM) and its specificity.
Methods: To address this question, we adopted a delayed match-to-sample task to train the working memory for faces and houses. Subjects were trained for 6 days with neutral faces, happy faces, sad faces, and houses in Experiments 1, 2, 3, and 4, respectively.
Results: The results revealed that training significantly increased the sensitivity (d') to discriminate the visual representations in VWM in all four experiments. Furthermore, the learning effects of neutral faces were transferable to emotional faces and vice versa. However, the learning effects of emotional faces exhibited limited transfer to untrained emotional faces. More importantly, the transfer of learning effects between faces and houses was asymmetrical, i.e., only the learning effects of faces could transfer to houses, whereas the reverse was not true.
Discussion: These results highlight distinct cognitive processes underlying the training effects for different stimulus categories and provide valuable insights into the mechanisms of VWM improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066658 | PMC |
http://dx.doi.org/10.3389/fnins.2025.1578862 | DOI Listing |