98%
921
2 minutes
20
While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate change belief, policy support, willingness to share information on social media, and a pro-environmental behavioral task) are predictable and to rank 19 individual- and nation-level predictors in terms of their importance across 55 countries ( = 4635). We find notable differences in explained variance for the outcomes (e.g., 57% for climate change belief vs. 10% for pro-environmental behavior). Four predictors had consistent effects across all outcomes: environmentalist identity, trust in climate science, internal environmental motivation, and the Human Development Index. However, most of the predictors show divergent patterns, predicting some but not all outcomes or even having opposite effects. To better capture this complexity, future models should include multi-level factors and consider the different contexts (e.g., public vs private) in which climate-related cognition and action emerge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061775 | PMC |
http://dx.doi.org/10.1038/s44168-025-00251-4 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Proc Natl Acad Sci U S A
September 2025
Max Planck Institute for Solar System Research, Göttingen 37077, Germany.
Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFHepatol Int
September 2025
Department of Biomedical Informatics and Data Science, Yale School of Medicine, PO Box 208009, New Haven, CT, 06520-8009, USA.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF