Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system.
New Method: Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolution-attention-temporal (CAT) classifier to classify the transferred features.
Results: The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively.
Comparison With Existing Methods: The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset.
Conclusions For Research Articles: The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2025.110483 | DOI Listing |