Visualization of functional and effective connectivity underlying auditory descriptive naming.

Clin Neurophysiol

Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michi

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We visualized functional and effective connectivity within specific white matter networks in response to auditory descriptive questions.

Methods: We investigated 40 Japanese-speaking patients with focal epilepsy and estimated connectivity measures using cortical high-gamma dynamics and MRI tractography.

Results: Hearing a wh-interrogative at question onset enhanced inter-hemispheric functional connectivity, with left-to-right callosal facilitatory flows between the superior-temporal gyri, contrasted by functional connectivity diminution with right-to-left callosal suppressive flows between dorsolateral prefrontal regions. Processing verbs associated with concrete objects or adverbs increased left intra-hemispheric connectivity, with bidirectional facilitatory flows through extensive white matter pathways. Questions beginning with what, compared to where, induced greater neural engagement in the left posterior inferior-frontal gyrus at question offset, linked to enhanced functional connectivity and bidirectional facilitatory flows to the temporal lobe neocortex via the arcuate fasciculus. During overt responses, inter-hemispheric functional connectivity was enhanced, with bidirectional callosal flows between Rolandic areas, and individuals with higher IQ scores exhibited less prolonged neural engagement in the left posterior middle frontal gyrus.

Conclusions: Visualization of directional neural interactions within white matter networks during overt naming is feasible.

Significance: Phrase order may influence network dynamics in listeners, even when presented with auditory descriptive questions conveying similar meanings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178814PMC
http://dx.doi.org/10.1016/j.clinph.2025.04.008DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
auditory descriptive
12
white matter
12
facilitatory flows
12
functional effective
8
connectivity
8
effective connectivity
8
matter networks
8
inter-hemispheric functional
8
connectivity bidirectional
8

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Bridging electrostatic screening and ion transport in lithium salt-doped ionic liquids.

J Chem Phys

September 2025

Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.

Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.

View Article and Find Full Text PDF

We develop the theory justifying the application of the density-based basis-set correction (DBBSC) method to double-hybrid approximations in order to accelerate their basis convergence. We show that, for the one-parameter double hybrids based on the adiabatic connection, the exact dependence of the basis-set correction functional on the coupling-constant parameter λ involves a uniform coordinate scaling by a factor 1/λ of the density and of the basis functions. Neglecting this uniform coordinate scaling corresponds essentially to the recent work of Mester and Kállay, J.

View Article and Find Full Text PDF

Accurately modeling volume-dependent properties of water remains a challenge for density functional theory (DFT), with widely used functionals failing to reproduce key features of the water density isobar, including its shape, density, and temperature of the density maximum. Here, we compare the performance of the RPBE-D3 and vdW-DF-cx functionals using replica exchange molecular dynamics (MD) driven by machine-learned force fields. Our simulations reveal that vdW-DF-cx predicts the water density more accurately than RPBE-D3 and reproduces the isobar closely between 307 and 340 K.

View Article and Find Full Text PDF