A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analytical solutions of the time-fractional symmetric regularized long wave equation using the [Formula: see text] model expansion method. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we introduce a new analytical technique to study the time-fractional symmetric regularized long wave (SRLW) equation, which is an important model for nonlinear wave phenomena in dispersive media. Combining the new [Formula: see text] model expansion technique with a conformable fractional derivative provides a systematic means of finding a wide class of exact traveling wave solutions, such as bright solitons, kink solitons, singular periodic solitons, and periodic solitons. which are crucial in optical and fluid systems, and their localized singularities, indicating wave-breaking or energy concentration effects, and their real-world implications. The solutions have been successfully shown and illustrated in 2D and 3D graphics. We then consider the effects of specific memory effects that are characteristic of fractional derivatives and expose that they are the key in regulating the amplitude and the phase shift of the waves and their stability. Our research not only enhances the mathematical resources available for fractional nonlinear systems but also establishes a solid foundation for modeling intricate wave phenomena in fluid mechanics, plasma physics, and advanced materials. This work links theoretical analysis with practical applications, emphasizing the transformative potential of fractional calculus in understanding real-world nonlinear phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064772PMC
http://dx.doi.org/10.1038/s41598-025-00240-xDOI Listing

Publication Analysis

Top Keywords

time-fractional symmetric
8
symmetric regularized
8
regularized long
8
long wave
8
[formula text]
8
text] model
8
model expansion
8
wave phenomena
8
periodic solitons
8
wave
5

Similar Publications