98%
921
2 minutes
20
Traditional methods of biodiversity monitoring are often logistically challenging, time-consuming, require experienced experts on species identification, and sometimes include destruction of the targeted specimens. Here, we investigated a non-invasive approach of combining the use of drones and environmental DNA (eDNA) to monitor insect biodiversity on vegetation. We aimed to assess the efficiency of this novel method in capturing insect diversity and comparing insect composition across different vegetation types (grassland, shrub and forest) in Switzerland. A commercial, off-the-shelf drone was equipped with a specialised probe that autonomously swabbed vegetation and collected eDNA. Then, samples were processed using rapid third-generation Oxford Nanopore sequencing. The obtained data were analysed for insect diversity, comparing taxonomic richness, evenness and community composition across the three habitat types using statistical techniques. Sequencing of the samples yielded 76 hexapod taxa, revealing an insect community with notable differences in taxonomic richness but not in evenness across grassland, shrub and forest habitats. Our study demonstrates the potential of drone-based sampling integrated with eDNA and nanopore sequencing for biodiversity monitoring, offering a non-destructive method for detecting insect occurrence on plant surfaces. Integrating robotics and eDNA technology provides a promising solution for fast, large-scale, non-invasive biodiversity monitoring, potentially improving conservation efforts and ecosystem management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058354 | PMC |
http://dx.doi.org/10.1002/ece3.71391 | DOI Listing |
PLoS One
September 2025
Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
September 2025
Yunnan Province Key Laboratory of Public Health and Biosafety, Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, School of Public Health, Kunming Medical University, Kunming, P.R. China.
: Mosquitoes harbor diverse insect-specific viruses (ISVs) frequently overlooked in arbovirus surveillance. Comprehensive characterization of ISVs is crucial for understanding their impact on host ecology and potential roles in arbovirus transmission. : Using metagenomic sequencing on Armigeres subalbatus from Yunnan, China, we identified two novel picorna-like viruses, assembled their genomes, and conducted phylogenetic analysis.
View Article and Find Full Text PDFBull Entomol Res
September 2025
Insect Biosystematics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
This study presents the first record of Kanturski & Lee, 2024 (Aphididae: Lachninae) in South Korea, thereby extending its known distribution beyond Japan and identifying a new host plant, (Rosaceae). We describe diagnostic morphological traits across multiple life stages and compare them with those of Japanese populations. Comparative analyses with Japanese populations demonstrated consistent morphological differentiation, notably elevated ratios of the ultimate rostral segment to antennal segments across multiple morphs in the Korean population, indicating potential ecological adaptation.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
Plant roots are colonised by diverse communities of microorganisms that can affect plant growth and enhance plant resistance to (a) biotic stresses. We investigated the role of the indigenous soil microbiome in the resistance of tomato to the invasive sap-sucking insect Prodiplosis longifila (Diptera: Cecidomyiidae). Native and agricultural soils were sampled from the Andes in Southern Ecuador and tested, in greenhouse bioassays, for leaf tissue damage caused by P.
View Article and Find Full Text PDF