A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rational Regulation of Layer-by-Layer Processed Active Layer via Trimer-Induced Pre-Swelling Strategy for Efficient and Robust Thick-Film Organic Solar Cells. | LitMetric

Rational Regulation of Layer-by-Layer Processed Active Layer via Trimer-Induced Pre-Swelling Strategy for Efficient and Robust Thick-Film Organic Solar Cells.

Adv Mater

School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thick-film (>300 nm) organic solar cells (OSCs) have garnered intensifying attention due to their compatibility with commercial roll-to-roll printing technology for the large-scale continuous fabrication process. However, due to the uncontrollable donor/acceptor (D/A) arrangement in thick-film condition, the restricted exciton splitting and severe carrier traps significantly impede the photovoltaic performance and operability. Herein, combined with layer-by-layer deposition technology, a twisted 3D star-shaped trimer (BTT-Out) is synthesized to develop a trimer-induced pre-swelling (TIP) strategy, where the BTT-Out is incorporated into the buried D18 donor layer to enable the fabrication of thick-film OSCs. The integrated approach characterizations reveal that the exceptional configuration and spontaneous self-organization behavior of BTT-Out trimer could pre-swell the D18 network to facilitate the acceptor's infiltration and accelerate the formation of D/A interfaces. This enhancement triggers the elevated polarons formation with amplified hole-transfer kinetics, which is essential for the augmented exciton splitting efficiency. Furthermore, the regulated swelling process can initiate the favorable self-assembly of L8-BO acceptors, which would ameliorate carrier transport channels and mitigate carrier traps. As a result, the TIP-modified thin-film OSC devices achieve the champion performance of 20.3% (thin-film) and 18.8% (thick-film) with upgraded stability, among one of the highest performances reported of thick-film OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202420631DOI Listing

Publication Analysis

Top Keywords

trimer-induced pre-swelling
8
pre-swelling strategy
8
organic solar
8
solar cells
8
exciton splitting
8
carrier traps
8
thick-film oscs
8
thick-film
6
rational regulation
4
regulation layer-by-layer
4

Similar Publications