Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
There is a significant knowledge gap regarding the acidification of freshwater ecosystems and its effects on biological systems. The bocachico (Prochilodus magdalenae), an endemic and migratory species vital to Colombia's inland fisheries, is currently classified as vulnerable. This study evaluated the impact of different pH levels (6.2, 7.2, and 7.6), previously recorded in the species' natural habitat, on its early development. Using an automated IKS Aquastar system, embryo incubation and larval maintenance were monitored from 0 to 5 days post-fertilization, assessing development, hatching, and survival at both organismal and transcriptional levels. Embryos exposed to pH 6.2 showed delayed development within 4 h post-fertilization, the lowest hatching rate (68.33 ± 3.13 %), and survival (23.88 ± 4.53 %), along with the highest incidence of malformations (37.80 ± 4.4 %). The pH 7.6 group also showed adverse effects, but to a lesser extent. Transcriptome analysis revealed a distinct molecular response in the pH 6.2 group, identifying 1214 differentially expressed genes related to early development, ossification, organ formation, sensory systems, and cellular processes. The findings indicate that pH fluctuations previously observed in the species' natural environment significantly affect P. magdalenae during early life stages, which raises serious concerns about the long-term viability of this endemic species and the sustainability of the artisanal fisheries that depend on it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2025.111875 | DOI Listing |