98%
921
2 minutes
20
The major histocompatibility complex class-I related protein, MR1, is an evolutionarily conserved antigen presenting molecule that binds and displays organic metabolites to T cells, including mucosal associated invariant T (MAIT) cells and diverse MR1-restricted T cells (MR1T). Structural studies have elucidated how MR1 can accommodate a range of chemical scaffolds that arise from foreign, synthetic, and self-metabolites, although the full spectrum of metabolites that MR1 presents remains unclear. Presently, MAIT and MR1T cell recognition of MR1-antigen complexes represents a new immune recognition paradigm and is emerging as a critical player in protective immunity, aberrant immunity, tumor immunity, and tissue repair. Moreover, the limited allelic variation of MR1 makes it an attractive therapeutic target. This review will address the unique features and capability of the MR1 molecule to display several classes of small molecules for T cell surveillance. We will also address the molecular basis underlying MAIT and MR1T TCR recognition of MR1-binding ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058573 | PMC |
http://dx.doi.org/10.1111/imr.70033 | DOI Listing |
MR1 is a non-polymorphic, ubiquitously expressed, MHC class I-like antigen-presenting molecule that presents small-molecule metabolites to T cells. Studies have shown that MR1 plays a role in microbial infection, inflammation, and tumor immunity. The antigens it presents include metabolites of microbial and self-origin as well as small-molecule drugs and form stable complexes with MR1 that are displayed on the cell surface to activate T cells.
View Article and Find Full Text PDFImmunol Rev
May 2025
Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
The major histocompatibility complex class-I related protein, MR1, is an evolutionarily conserved antigen presenting molecule that binds and displays organic metabolites to T cells, including mucosal associated invariant T (MAIT) cells and diverse MR1-restricted T cells (MR1T). Structural studies have elucidated how MR1 can accommodate a range of chemical scaffolds that arise from foreign, synthetic, and self-metabolites, although the full spectrum of metabolites that MR1 presents remains unclear. Presently, MAIT and MR1T cell recognition of MR1-antigen complexes represents a new immune recognition paradigm and is emerging as a critical player in protective immunity, aberrant immunity, tumor immunity, and tissue repair.
View Article and Find Full Text PDFNeonatal sepsis is a leading cause of childhood mortality. Understanding immune cell development can inform strategies to combat this. MR1-restricted T (MR1T) cells can be defined by their recognition of small molecules derived from microbes, self, and drug and drug-like molecules, presented by the MHC class 1-related molecule (MR1).
View Article and Find Full Text PDFbioRxiv
March 2025
Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
Neonatal sepsis is a leading cause of childhood mortality. Understanding immune cell development can inform strategies to combat this. MR1-restricted T (MR1T) cells can be defined by their recognition of small molecules derived from microbes, self, and drug and drug-like molecules, presented by the MHC class 1-related molecule (MR1).
View Article and Find Full Text PDFImmunity
February 2025
Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland. Electronic address:
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.
View Article and Find Full Text PDF