Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
CAV1 is a protein-coding gene linked to several disorders, including cancer, lipodystrophy, and cardiovascular diseases. While its ability to respond to various mechanical and metabolic stimuli has been documented, a comprehensive understanding of its physiological regulation in humans is lacking. We leveraged the comprehensiveness of human post-mortem tissue data from the Genotype-Tissue Expression (GTEx) consortium, systematically exploring the sources of variability in CAV1 transcriptional levels using extensive bulk and single-nuclei RNA-seq datasets. This human-centric approach, avoiding inter-species comparisons, constitutes a unique resource to explore CAV1 regulation within the complexity of human tissues. Notably, cell type proportion was identified as a major determinant of CAV1 transcription levels across tissues. Donor physiological conditions, including disease states and end-of-life circumstances, also exhibited a tissue-specific influence. Among primary upstream regulators associated with CAV1, chromatin modifiers stood out, especially SMARCA2, which showed a positive correlation across tissues, and PRC2 complexes, which exhibited tissue-specific correlation. Upstream regulatory networks determining CAV1 levels are also enriched for annotations such as mechanobiology (e.g., TEAD4), immunity (e.g., RELA and STAT3), and metabolism (e.g., MYC and NRF1). A remarkable observation was a strong correlation between CAV1 and the relative infiltration of immune cells across tissues, supporting a potential role for CAV1 as a marker and driver of tissue immune infiltration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027754 | PMC |
http://dx.doi.org/10.3390/ijms26083789 | DOI Listing |