Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During various stages of its life cycle, initiate biofilm signalling cascade. Intercellular high level of the signalling nucleotide 3'-5' cyclic dimeric guanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclases (DGCs) from its precursor molecule GTP, is crucial for biofilm formation. Present study endeavours to approaches in evaluating genomic, physicochemical, topological and functional properties of six c-di-GMP regulatory DGCs (CdgA, CdgH, CdgK, CdgL, CdgM, VpvC) of . Genomic investigations unveiled that codon preferences were inclined towards AU ending over GC ending codons and overall GC content ranged from 44.6 to 49.5 with codon adaptation index ranging from 0.707 to 0.783. Topological analyses deciphered the presence of transmembrane domains in all proteins. All the DGCs were acidic, hydrophilic and thermostable. Only CdgA, CdgH and VpvC were predicted to be stable during conditions. Non-polar amino acids with leucine being the most abundant amino acid among these DGCs with α-helix as the predominant secondary structure, responsible for forming the transmembrane regions by secondary structure analysis. Tertiary structures of the proteins were obtained by computation using AlphaFold and trRosetta. Predicted structures by both the servers were compared in various aspects using PROCHECK, ERRAT and Modfold8 servers. Selected 3D structures were refined using GalaxyRefine. InterPro Scan revealed presence of a conserved GGDEF domain in all DGCs and predicted the active site residues in the GGDEF domain. Molecular docking studies using CB-DOCK 2 tool revealed that among the DGCs, VpvC exhibited highest affinity for GTP (-5.6 kcal/mol), which was closely followed by CdgL (-5.5 kcal/mol). MD simulations depicted all DGC-GTP complexes to be stable due to its considerably low eigenvalues. Such studies are considered to provide maiden insights into the genomic and structural properties of DGCs, actively involved in biofilm signalling systems, and it is projected to be beneficial in the discovery of novel DGC inhibitors that can target and downregulate the c-di-GMP regulatory system to develop anti-biofilm strategies against the cholera pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051071PMC
http://dx.doi.org/10.1016/j.crstbi.2025.100166DOI Listing

Publication Analysis

Top Keywords

biofilm signalling
12
structural properties
8
diguanylate cyclases
8
involved biofilm
8
c-di-gmp regulatory
8
cdga cdgh
8
secondary structure
8
ggdef domain
8
dgcs
7
investigations genomic
4

Similar Publications

Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.

View Article and Find Full Text PDF

During early stages of biofilm formation, Pseudomonas aeruginosa (Pa) PAO1 can sense exopolysaccharide (EPS) trails of Psl deposited on a surface by previous Pa cells to detect trajectories of other cells and to orchestrate motility. This sensory signal is transduced into cyclic diGMP second messengers, but no known Psl receptors and adhesins participate in signal transduction. Here, using bacteria-secreted Psl trails, glycopolymer-patterned surfaces, longitudinal cell tracking, second messenger dual reporters and genetic mutations targeting EPS binding and surface twitching, we find that Pa is capable of sensing EPS directly through mutually constitutive interactions between type IV pili (T4P)-powered twitching and specific adhesin-EPS bonds.

View Article and Find Full Text PDF

Highly effective antibacterial wound dressings are essential for improving the treatment of infected wounds. This study constructs a nitrogen-doped carbon-based silver single-atom/nanoparticle composite carrier (2% Ag-NC) and anchors it in a cationic guar matrix (CG) to develop a smart dressing with synergistic antibacterial-healing-promoting function. Benefiting from the doped Ag, the triple enzyme catalytic efficiencies of oxidase, peroxidase, and glutathione peroxidase are enhanced.

View Article and Find Full Text PDF

The persistence of plastics in the environment, especially after waste disposal, poses a significant threat to ecosystems. Microplastics (MPs) are particularly concerning due to their small size and the difficulty of detection. Once in aquatic systems, MPs threaten marine life and human health through the food chain.

View Article and Find Full Text PDF

Mass spectrometry peptidomics data from infected and uninfected porcine wounds.

Sci Data

September 2025

Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.

Recently, mass spectrometry based peptidomics studies have proven useful in the identification of biomarkers and bioactive peptide-based therapeutics. Here, we present a dataset comprised of temporal wound fluid peptidomics data from highly defined porcine models. Wound fluids from porcine wounds infected with Staphylococcus aureus and Pseudomonas aeruginosa, and uninfected controls, were sampled at different timepoints of the infection.

View Article and Find Full Text PDF