Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents a mathematical model describing cloned hematopoiesis in chronic myeloid leukemia (CML) through a nonlinear system of differential equations. The primary objective is to understand the progression from healthy hematopoiesis to the chronic and accelerated-acute phases in myeloid leukemia. The model incorporates intrinsic cellular division events in hematopoiesis and delineates the evolution of chronic myeloid leukemia into five compartments: cycling stem cells, quiescent stem cells, progenitor cells, differentiated cells, and terminally differentiated cells. Our analysis reveals the existence of three distinct non-zero steady states within the dynamical system, representing healthy hematopoiesis, the chronic phase, and the accelerated-acute stage of the disease. We investigate the local and global stability of these steady states and provide a characterization of the hematopoietic states based on this analysis. Additionally, numerical simulations are included to illustrate the theoretical results.

Download full-text PDF

Source
http://dx.doi.org/10.1093/imammb/dqaf004DOI Listing

Publication Analysis

Top Keywords

myeloid leukemia
16
chronic myeloid
12
hematopoiesis chronic
12
mathematical model
8
healthy hematopoiesis
8
stem cells
8
differentiated cells
8
steady states
8
hematopoiesis
5
chronic
5

Similar Publications

Given the dismal prognosis for patients with TP53-mutated acute myeloid leukemia (AML), the optimal donor for those undergoing allogeneic hematopoietic cell transplantation (allo-HCT) remains unclear. We retrospectively analyzed adult patients with TP53-mutated AML who underwent first allo-HCT in CR1 between 2010 and 2021. Outcomes were compared among using a haploidentical donor (Haplo), a matched sibling donor (MSD), and a 10/10 matched unrelated donor (MUD).

View Article and Find Full Text PDF

Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.

View Article and Find Full Text PDF

High risk factors, molecular features and clinical management for radioactive iodine-refractory differentiated thyroid carcinoma.

Front Oncol

August 2025

Department of Pathology, Institute of Clinical Pathology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Despite the generally favorable prognosis of differentiated thyroid carcinoma (DTC) following surgery and radioactive iodine (RAI) therapy, approximately 10% of cases eventually develop resistance to RAI. This condition, known as radioiodine-refractory differentiated thyroid carcinoma (RAIR-DTC), is associated with a poor prognosis, with a 10-year survival rate of only 10% from the time of metastasis detection. The limited availability of safe and effective alternative treatments poses a significant challenge to clinical management.

View Article and Find Full Text PDF

Background: Mixed-phenotype acute leukemia (MPAL) is a rare acute leukemia for which data are currently not available to guide therapy. It has a poor outcome, particularly in elderly patients.

Case Presentation: We report the successful use of venetoclax/azacitidine as treatment for a treatment-naive elderly patient with early T-cell precursor (ETP)/myeloid MPAL.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF