Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The sequence of nucleotides that make up an RNA determines its structure, which determines its function. The RNA hairpin, also known as a stem-loop, is a ubiquitous and fundamental feature of RNA secondary structure. A common method of randomizing an RNA sequence is dinucleotide shuffling with the Altschul-Erickson algorithm, which preserves the dinucleotide content of the sequence. This algorithm generates randomized sequences by sampling Eulerian paths through the de Bruijn graph representation of the original sequence. We identified a subset of RNA hairpins in the bpRNA-1m meta-database that always form hairpins after repeated application of dinucleotide shuffling. We investigated these "unbreakable hairpins" and found several common properties. First, we found that unbreakable hairpins had on average similar folding energies compared to other hairpins of similar lengths, although they frequently contained ultra-stable hairpin loops. We found that they tend to be split by purines and pyrimidines on opposite sides of the stem. Furthermore, we found that this specific sequence feature restricts the number of distinct Eulerian paths through their de Bruijn graph representation, resulting in a small number of distinguishable dinucleotide-shuffled sequences. Beyond this algorithmic means of identification, these distinct sequences may have biological significance because we found that a significant percentage occur in a specific location of 16S ribosomal RNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170181 | PMC |
http://dx.doi.org/10.1261/rna.080176.124 | DOI Listing |