A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling unbreakable hairpins: characterizing RNA secondary structures that are persistent after dinucleotide shuffling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The sequence of nucleotides that make up an RNA determines its structure, which determines its function. The RNA hairpin, also known as a stem-loop, is a ubiquitous and fundamental feature of RNA secondary structure. A common method of randomizing an RNA sequence is dinucleotide shuffling with the Altschul-Erickson algorithm, which preserves the dinucleotide content of the sequence. This algorithm generates randomized sequences by sampling Eulerian paths through the de Bruijn graph representation of the original sequence. We identified a subset of RNA hairpins in the bpRNA-1m meta-database that always form hairpins after repeated application of dinucleotide shuffling. We investigated these "unbreakable hairpins" and found several common properties. First, we found that unbreakable hairpins had on average similar folding energies compared to other hairpins of similar lengths, although they frequently contained ultra-stable hairpin loops. We found that they tend to be split by purines and pyrimidines on opposite sides of the stem. Furthermore, we found that this specific sequence feature restricts the number of distinct Eulerian paths through their de Bruijn graph representation, resulting in a small number of distinguishable dinucleotide-shuffled sequences. Beyond this algorithmic means of identification, these distinct sequences may have biological significance because we found that a significant percentage occur in a specific location of 16S ribosomal RNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170181PMC
http://dx.doi.org/10.1261/rna.080176.124DOI Listing

Publication Analysis

Top Keywords

dinucleotide shuffling
12
unbreakable hairpins
8
rna secondary
8
eulerian paths
8
paths bruijn
8
bruijn graph
8
graph representation
8
rna
6
hairpins
5
sequence
5

Similar Publications