Asymmetric Vicinal and Remote Hydroamination of Olefins by Employing a Heck-Reaction-Derived Hydride Source.

J Am Chem Soc

Institute of Chemistry Frontier, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal hydrides are reactive intermediates in numerous catalytic processes. In many catalytic processes, metal hydrides are formed, but their potential reactivity is often wasted by reaction with a base or an oxidant to permit catalyst turnover. In this report, the hydroamination of unactivated olefins is described by coupling a Heck reaction with a hydroamination reaction between aryl boronic acid, olefin, and a nitrene precursor dioxazolone. Initiated by a Heck reaction between the olefin and arylboroic acid, a rhodium hydride intermediate is generated and is retained for the hydroamination of a second equivalent of the olefin. Depending on the chain length of the alkyl group of the olefin, α- or β-amino amides were obtained in excellent regio- and enantioselectivity via direct or remote (migratory) hydroamination, respectively. The coupling system features a broad scope, mild conditions, and excellent enantioselectivity, and it also represents a rare example of asymmetric olefin hydroamination using a chiral rhodium(III) cyclopentadienyl catalyst. Mechanistic studies delineated the turnover-limiting and enantio-determining steps of this catalytic system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c03076DOI Listing

Publication Analysis

Top Keywords

metal hydrides
8
catalytic processes
8
heck reaction
8
hydroamination
6
olefin
5
asymmetric vicinal
4
vicinal remote
4
remote hydroamination
4
hydroamination olefins
4
olefins employing
4

Similar Publications

The theoretical maximum critical temperature (T) for conventional superconductors at ambient pressure remains a fundamental question in condensed matter physics. Through analysis of electron-phonon calculations for over 20,000 metals, we critically examine this question. We find that while hydride metals can exhibit maximum phonon frequencies of more than 5000 K, the crucial logarithmic average frequency rarely exceeds 1800 K.

View Article and Find Full Text PDF

Mechanistic insights into neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters: a DLPNO-CCSD(T) study.

Phys Chem Chem Phys

September 2025

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.

Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.

View Article and Find Full Text PDF

Same-group element replacement enhances superconductivity in clathrate-like YH4.

J Chem Phys

September 2025

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

H3S, LaH10, and hydrogen-based compounds have garnered significant interest due to their high-temperature superconducting properties. However, the requirement for extremely high pressures limits their practical applications. In this study, YH4 is adopted as a base material, with partial substitution of yttrium (Y) by scandium (Sc), lanthanum (La), and zirconium (Zr).

View Article and Find Full Text PDF

Nitrogenase accumulates reducing equivalents in hydrides and couples H elimination to the reductive binding of N at a di-iron edge of its FeMo cofactor (FeMoco). Here, we describe that oxidation of a pyrazolato-based dinickel(II) dihydride complex K[L(Ni-H)] (), either electrochemically or chemically using H or ferrocenium, triggers H elimination and binding of N in a constrained and extremely bent bridging mode in [LNi(μ-N)] (). Spectroscopic and computational evidence indicate that the electronic structure of is best described as Ni-(N)-Ni, with a rare 1e reduced and significantly activated N substrate ( = 1894 cm).

View Article and Find Full Text PDF

Recent advances in the construction of quaternary pseudoanomeric centers in ,-glycosides: from zaragozic acids to remdesivir.

Org Biomol Chem

September 2025

Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.

,-glycosides--glycosides characterized by two carbon substituents at the pseudo-anomeric position-constitute a structurally distinctive class of glycomimetics with growing relevance in natural products and drug discovery. These motifs appear in diverse bioactive compounds such as maitotoxin, nogalamycins, zaragozic acids and remdesivir, displaying antimicrobial, anti-inflammatory, and anticancer properties. The unique architectures of ,-glycosides expand the glycochemical space and hold promise for therapeutic development.

View Article and Find Full Text PDF