A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

3D-Printed Cell-Instructive Scaffolds Based on Collagen and Sr-Doped Calcium Phosphates for Bone Tissue Engineering. | LitMetric

3D-Printed Cell-Instructive Scaffolds Based on Collagen and Sr-Doped Calcium Phosphates for Bone Tissue Engineering.

ACS Biomater Sci Eng

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guima

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bone defects pose a global concern due to their high prevalence. Despite the significant advances in the development of novel therapies and sustainable biomaterial solutions, these still do not perfectly address the clinical needs, in particular, the paradigm shift of personalized treatments. In this sense, marine-origin materials allied to three-dimensional (3D) printing are arising as a feasible alternative to develop innovative personalized approaches, namely, bone tissue engineering (TE). In this study, novel 3D-printed scaffolds composed of collagen obtained from the maricultured marine sponge and calcium phosphates extracted from codfish () bones doped with strontium, and combined with alginate, were developed as a promising approach for bone regeneration. The 3D-printed scaffolds demonstrated suitable pore size and porosity and high interconnectivity, with adequate mechanical properties for bone TE. The assays conducted with a human osteosarcoma cell line (Saos-2 cells) cultured onto the 3D-printed scaffolds demonstrated a notable improvement in both cell viability and proliferation up to 14 days of culturing. This enhancement was particularly evident in the case of 3D-printed scaffolds containing Sr-doped calcium phosphates. Aligned with the principles of the blue economy and within a sustainable development approach, an innovative 3D-printed scaffold produced from sustainable marine-derived collagen and strontium-doped calcium phosphates with adequate mechanical properties, architecture, and encouraging performance was developed for bone tissue engineering scaffolding applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c01926DOI Listing

Publication Analysis

Top Keywords

calcium phosphates
16
3d-printed scaffolds
16
bone tissue
12
tissue engineering
12
sr-doped calcium
8
scaffolds demonstrated
8
adequate mechanical
8
mechanical properties
8
3d-printed
6
bone
6

Similar Publications