Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Alarm fatigue, a multifactorial desensitization of staff to alarms, can harm both patients and health care staff in intensive care units (ICUs), especially due to false and nonactionable alarms. Increasing amounts of routinely collected alarm and ICU patient data are paving the way for training machine learning (ML) models that may help reduce the number of nonactionable alarms, potentially increasing alarm informativeness and reducing alarm fatigue. At present, however, there is no publicly available dataset or process that routinely collects information on alarm actionability (ie, whether an alarm triggers a medical intervention or not), which is a key feature for developing meaningful ML models for alarm management. Furthermore, case-based manual annotation is too slow and resource intensive for large amounts of data.

Objective: We propose a scalable method to annotate patient monitoring alarms associated with patient-related variables regarding their actionability. While the method is aimed to be used primarily in our institution, other clinicians, scientists, and industry stakeholders could reuse it to build their own datasets.

Methods: The interdisciplinary research team followed a mixed methods approach to develop the annotation method, using data-driven, qualitative, and empirical strategies. The iterative process consisted of six steps: (1) defining alarm terms; (2) reaching a consensus on an annotation concept and documentation structure; (3) defining physiological alarm conditions, related medical interventions, and time windows to assess; (4) developing mapping tables; (5) creating the annotation rule set; and (6) evaluating the generated content. All decisions were made based on feasibility criteria, clinical relevance, occurrence frequency, data availability and quantity, structure, and storage mode. The annotation guideline development process was preceded by the analysis of the institution's data and systems, the evaluation of device manuals, and a systematic literature review.

Results: In a multidisciplinary consensus-based approach, we defined preprocessing steps and a rule-based annotation method to classify alarms as either actionable or nonactionable based on data from the patient data management system. We have presented our experience in developing the annotation method and provided the generated resources. The method focuses on respiratory and medication management interventions and includes 8 general rules in a tabular format that are accompanied by graphical examples. Mapping tables enable handling unstructured information and are referenced in the annotation rule set.

Conclusions: Our annotation method will enable a large number of alarms to be labeled semiautomatically, retrospectively, and quickly, and will provide information on their actionability based on further patient data. This will make it possible to generate annotated datasets for ML models in alarm management and alarm fatigue research. We believe that our annotation method and the resources provided are universal enough and could be used by others to prepare data for future ML projects, even beyond the topic of alarms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089878PMC
http://dx.doi.org/10.2196/65961DOI Listing

Publication Analysis

Top Keywords

annotation method
24
alarm fatigue
12
patient data
12
annotation
11
alarm
11
method
9
alarms
8
data
8
mixed methods
8
methods approach
8

Similar Publications

A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.

View Article and Find Full Text PDF

The increasing complexity and volume of radiology reports present challenges for timely critical findings communication. To evaluate the performance of two out-of-the-box LLMs in detecting and classifying critical findings in radiology reports using various prompt strategies. The analysis included 252 radiology reports of varying modalities and anatomic regions extracted from the MIMIC-III database, divided into a prompt engineering tuning set of 50 reports, a holdout test set of 125 reports, and a pool of 77 remaining reports used as examples for few-shot prompting.

View Article and Find Full Text PDF

Background: Addictive disorders remain a global problem, affecting health, society and the economy. The etiopathogenesis of addictions, which have a multifactorial nature, is poorly understood, making it difficult to develop personalized treatment approaches. Of particular interest is the gene, which regulates serotonergic transmission.

View Article and Find Full Text PDF

The morphological patterns of lung adenocarcinoma (LUAD) are recognized for their prognostic significance, with ongoing debate regarding the optimal grading strategy. This study aimed to develop a clinical-grade, fully quantitative, and automated tool for pattern classification/quantification (PATQUANT), to evaluate existing grading strategies, and determine the optimal grading system. PATQUANT was trained on a high-quality dataset, manually annotated by expert pathologists.

View Article and Find Full Text PDF

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF