Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Homologous recombination (HR) removes DNA double-strand breaks (DSBs) and preserves stressed DNA replication forks. Successful HR execution requires the tumor suppressor BRCA2, which harbors distinct DNA-binding domains (DBDs): one that possesses three oligonucleotide/oligosaccharide-binding (OB) folds (OB-DBD) and another residing in the C-terminal recombinase binding domain (CTRB-DBD). Here, we employ multi-faceted approaches to delineate the contributions of these domains toward HR and replication fork maintenance. We show that OB-DBD and CTRB-DBD confer single-strand DNA (ssDNA)- and dsDNA-binding capabilities, respectively, and that BRCA2 variants mutated in either domain are impaired in their ability to load the recombinase RAD51 onto ssDNA pre-occupied by RPA. While the CTRB-DBD mutant is modestly affected by DNA break repair, it exhibits a strong defect in the protection of stressed replication forks. In contrast, the OB-DBD is indispensable for both BRCA2 functions. Our study thus defines the unique contributions of the two BRCA2 DBDs in genome maintenance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12129652PMC
http://dx.doi.org/10.1016/j.celrep.2025.115654DOI Listing

Publication Analysis

Top Keywords

dna-binding domains
8
replication fork
8
replication forks
8
brca2
5
dna
5
distinct roles
4
roles brca2
4
brca2 dna-binding
4
domains dna
4
dna damage
4

Similar Publications

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF

Chromosome organization and segregation are fundamental processes across all domains of life. In bacteria, the mechanisms governing nucleoid organization remain poorly understood. This study investigates the function of an alternative structural maintenance of chromosomes (SMC) complex, MksBEF, in .

View Article and Find Full Text PDF

DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.

View Article and Find Full Text PDF

CysB in the Multiverse of Functions: Regulatory Roles in Cysteine Biosynthesis and Beyond.

Front Biosci (Landmark Ed)

August 2025

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

CysB is a member of the large bacterial LysR-type transcriptional regulator (LTTR) protein family. Like the majority of LTTRs, CysB functions as a homotetramer in which each subunit has an N-terminal winged-helix-turn-helix (wHTH) DNA-binding domain connected to an effector-binding domain by a helical hinge region. CysB is best known for its role in regulating the expression of genes associated with sulfur uptake and biosynthesis of cysteine in Gram-negative species such as and .

View Article and Find Full Text PDF

Evaluation of FOXP3 Exons 2 and 7 Variants in Recurrent Pregnancy Loss among South Indian Women.

Curr Protein Pept Sci

September 2025

Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, India.

Introduction: One to two percent of women worldwide experience recurrent pregnancy loss (RPL), defined as the loss of two or more consecutive pregnancies before 20 weeks of gestation. Genetic factors, including variations in the FOXP3 gene, have been implicated in the unexplained etiology of RPL. This study aimed to identify and characterize novel genetic variants in exons 2 and 7 of the FOXP3 gene in South Indian women with idiopathic RPL and to analyze their potential impact on protein structure.

View Article and Find Full Text PDF