Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Non-ribosomal peptide synthetases (NRPSs) are modular multidomain enzymes responsible for the biosynthesis of various secondary metabolites in an mRNA template-independent manner. They are predominantly present in bacteria and fungi, where they synthesize a variety of products, including antibiotics, siderophores, toxins, and signaling molecules. The human pathogen possesses one single NRPS, AusA, highly conserved in all sequenced strains. AusA incorporates the aromatic amino acids (AAAs) phenylalanine or tyrosine, as well as the branched-chain amino acids valine and leucine into three cyclic dipeptides collectively called aureusimines: phevalin, tyrvalin, and leuvalin. By using targeted metabolomics, we found that during growth in the common tissue culture medium RPMI1640, AusA preferentially synthesizes phevalin, despite similar availability for both phenylalanine and tyrosine. Upon cultivation in a chemically defined medium, however, the yields for both products are comparable, albeit with a slight preference for phevalin. Moreover, omission of either "building block" (phenylalanine, tyrosine, or valine) does not abrogate aureusimine biosynthesis, showing that biosynthesis of these amino acids is sufficient to yield aureusimine production. Cultivation of in a synthetic medium mimicking human nasal secretions, lacking tyrosine, results in marked phevalin production, despite moderate bacterial growth. Our report on culture medium composition-driven AAA incorporation by a bacterial NRPS provides a useful basis for linking bacterial cell metabolic status to the biosynthesis of secondary metabolites.

Importance: Peptide and protein synthesis are fundamental processes in nature which are largely mediated by the ribosomal machinery. An alternative pathway for peptide synthesis is non-ribosomal mRNA template-independent synthesis, performed by so-called NRPSs. NRPSs are multi-enzyme complexes which serve the simultaneous role of template and biosynthetic machinery. They are mostly found in bacteria and fungi and are responsible for the biosynthesis of many pharmacologically significant products, including antibiotics, anticancer compounds, or immunosuppressants. The human pathogen possesses one such NRPS, AusA, which synthesizes three cyclic dipeptides termed "aureusimines" using the aromatic amino acids phenylalanine and tyrosine and the branched-chain amino acids leucine and valine. Although the biological role of aureusimines remains unknown, AusA appears to play a role in the interaction of with the host. In addition, owing to its minimal canonical NRPS structure and autonomous function (i.e., most NRPS pathways require the assembly of several NRPS proteins), AusA represents an excellent model system for studying such molecular assembly lines. Our observation is, to our knowledge, the first report of an NRPS showing preferential incorporation of aromatic amino acids, despite their similar availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153313PMC
http://dx.doi.org/10.1128/mbio.00845-24DOI Listing

Publication Analysis

Top Keywords

amino acids
24
phenylalanine tyrosine
16
aromatic amino
12
non-ribosomal peptide
8
responsible biosynthesis
8
biosynthesis secondary
8
mrna template-independent
8
bacteria fungi
8
products including
8
including antibiotics
8

Similar Publications

Background: Secondary fermentation can reduce variability in cocoa bean quality caused by the spontaneous, uncontrolled nature of primary fermentation. However, its optimization remains unexplored. This study evaluated the improvement of secondary fermentation through the combined use of Citrus limon peel and inoculation with Candida tropicalis H1Y4-1 as a starter.

View Article and Find Full Text PDF

Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.

View Article and Find Full Text PDF

Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.

Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.

View Article and Find Full Text PDF

Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.

View Article and Find Full Text PDF

Introduction: Aging is accompanied by systemic metabolic changes that contribute to disease susceptibility and functional decline. Sex differences in aging have been reported in humans, yet their mechanistic basis remains poorly understood. Due to their physiological similarity to humans, rhesus macaques are a powerful translational model to investigate sex-specific metabolomic aging under controlled conditions.

View Article and Find Full Text PDF