A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modulating Cancer Stem Cell Characteristics in CD133+ Melanoma Cells through Hif1α, KLF4, and SHH Silencing. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Malignant melanoma is a highly aggressive form of skin cancer, partly driven by a subset of cancer stem cells (CSCs) with remarkable capacities for self-renewal, differentiation, and resistance to therapy. In this study, we examined how silencing three key genes-Hif1α, KLF4, and SHH-affects CSC characteristics. Using small interfering RNA (siRNA)-based approaches, we observed significant changes at both the gene and protein levels, shedding light on how these pathways influence melanoma progression. Our results demonstrated that silencing these genes reduces the stem-like features of CSCs. Notably, Hif1α silencing triggered a marked decrease in hypoxia-related gene expression, while targeting SHH led to a reduction in Gli1, a downstream effector of SHH signaling, highlighting its potential as a therapeutic target. We also observed changes in epigenetic markers such as HDAC9 and EP300, which play crucial roles in maintaining stemness and regulating gene expression. Interestingly, these interventions appeared to reprogram CSCs, pushing them toward a phenotype distinct from both traditional CSCs and non-stem cancer cells (NCSCs). Our findings emphasize the importance of targeting key signaling pathways in melanoma CSCs and underscore the value of mimicking the tumor microenvironment in experimental models. By revealing the dynamic plasticity of melanoma CSCs, this study offers fresh insights into potential therapeutic strategies, particularly using siRNA to modulate pathways associated with tumor progression and stem cell behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044452PMC
http://dx.doi.org/10.1021/acsomega.5c00799DOI Listing

Publication Analysis

Top Keywords

cancer stem
8
stem cell
8
observed changes
8
gene expression
8
potential therapeutic
8
melanoma cscs
8
cscs
6
melanoma
5
modulating cancer
4
cell characteristics
4

Similar Publications