A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structural and Functional Differences of Rhodostomin and Echistatin in Integrin Recognition and Biological Implications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rhodostomin (Rho) and Echistatin (Ech) are RGD-containing disintegrins with different sizes, disulfide bond patterns, and amino acid sequences in their RGD loops and C-termini. Cell adhesion analyzes showed that Rho exhibited a 5.2-, 18.9-, 2.2-, and 1.7-fold lower inhibitory activity against integrins αvβ3, α5β1, αIIbβ3, and αvβ5 in comparison with those of Ech. In contrast, Rho exhibited an 8.8-fold higher activity than Ech in inhibiting integrin αvβ6. The swapping of Ech's RGD loop and C-terminal sequences into those of Rho cannot increase its integrins' inhibitory activities. Interestingly, the mutation of Ech into Rho's RGD loop PRGDMP sequence and C-terminal YH sequence caused an 8.2-fold higher activity in inhibiting integrin αvβ6. Structural analyzes of Rho and Ech showed that they have similar conformations in their RGD loop and different conformations in their C-terminal regions. Molecular docking found that not only the RGD loop but also the C-terminal region of Rho and Ech interacted with integrins, showing that the C-terminal region is also important for integrin recognition. The docking of Rho into integrin αvβ6 showed that the C-terminal H68 residue of Rho interacted with D129 of β6. In contrast, the docking of Ech into integrin α5β1 showed that the C-terminal H44 residue of Ech interacted with Q191 of β1. Ech exhibited 78.5- and 10.9-fold higher activities in inhibiting HUVEC proliferation and A375 melanoma cell migration than those of Rho. These findings demonstrate that the disulfide bond pattern, RGD loop, and C-terminal region of disintegrins may cause their functional differences. The functional and structural differences between Rho and Ech support their potential as scaffolds to design drugs targeting their respective integrins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26834DOI Listing

Publication Analysis

Top Keywords

rgd loop
20
integrin αvβ6
12
loop c-terminal
12
rho ech
12
c-terminal region
12
rho
10
ech
10
functional differences
8
integrin recognition
8
disulfide bond
8

Similar Publications