A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EphB2 receptor tyrosine kinase-mediated excitatory synaptic functions are negatively modulated by MDGA2. | LitMetric

EphB2 receptor tyrosine kinase-mediated excitatory synaptic functions are negatively modulated by MDGA2.

Prog Neurobiol

Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MDGA2 is an excitatory synapse-specific suppressor that uses distinct extracellular mechanisms to negatively regulate various postsynaptic properties. Here, we identify EphB2, an excitatory synapse-specific receptor tyrosine kinase, as a new binding partner for MDGA2. The first three immunoglobulin domains of MDGA2 undergo cis-binding to the ligand-binding domain of EphB2, enabling MDGA2 to compete with Ephrin-B1 for binding to EphB2. Moreover, EphB2 forms complexes with MDGA2 and GluN2B-containing NMDA receptors (NMDARs) in mouse brains. MDGA2 deletion promotes formation of the EphB2/Ephrin-B1 complex but does not alter the surface expression levels and Ephrin-stimulated activation of EphB2 receptors and downstream GluN2B-containing NMDARs in cultured neurons. AlphaFold-based molecular replacement experiments reveal that MDGA2 must bind EphB2 to suppress spontaneous synaptic transmission and NMDAR-mediated, but not AMPAR-mediated, postsynaptic responses at excitatory synapses in cultured neurons. These results collectively suggest that MDGA2 is a versatile factor that suppresses distinct excitatory postsynaptic properties via different transsynaptic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202055PMC
http://dx.doi.org/10.1016/j.pneurobio.2025.102772DOI Listing

Publication Analysis

Top Keywords

mdga2
9
receptor tyrosine
8
excitatory synapse-specific
8
postsynaptic properties
8
cultured neurons
8
ephb2
7
excitatory
5
ephb2 receptor
4
tyrosine kinase-mediated
4
kinase-mediated excitatory
4

Similar Publications