Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Isotopic tracing has been widely used to identify the sources and migration processes of Zn in diverse environments. However, Zn isotope fractionation during the migration process within the mining area poses challenges to the accuracy of isotopic tracing. To address this issue, a representative Pb-Zn mining area in the karst region of southwestern China was selected as the study area, given its long-term tailings' pollution history and the extensive spatial distribution of Zn migration. End-member samples and environmental media (soil, plants, river water and groundwater) were systematically collected, and heavy metal concentrations and isotopic signatures were analyzed. The migration pathways of Zn and associated isotopic fractionation from end members to surrounding environments were comprehensively investigated. Results indicated that tailings constitute the dominant source of Zn, with ZnS weathering being the primary driver of Zn isotopic variability in soils. Eluviation process, characterized by selective transport of soluble Zn enriched in heavy isotopes, was identified as the key mechanism governing Zn migration across the soil-plant-river continuum. Retention processes (adsorption by organic matter, plant uptake, and mineral interactions) exhibited minimal influence on soil Zn isotopic composition. These findings advance the understanding of Zn and Zn isotope cycling in karst ecosystems and provide a scientific basis for formulating pollution control strategies in mining areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2025.138394 | DOI Listing |