Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Water-soluble polymers (WSPs) are widely used in industrial and agricultural applications, as well as in consumer products. After use, they may be released into both engineered and natural environments, where their fate is governed by transfer and transformation processes which are strongly influenced by their molecular weight distribution (MWD). Unlike traditional low molecular weight organic chemicals, WSPs are ensembles of molecules with varying chain lengths. This work suggests the use of Monte Carlo (MC) simulations to model shifts in MWDs resulting from abiotic and biotic chain scission reactions in receiving environments. We specify key factors influencing chain-scission selectivity, including chain-end scissions, molecular weight-dependent scissions, and site-specific scissions. Experimental validation of MC simulation predictions presents analytical challenges, requiring high-resolution MWD characterization of WSPs and reliable extraction techniques from complex environmental matrices. MC simulations may play a pivotal role not only in identifying the most relevant molecular weight (MW) ranges for targeted analysis but also in predicting and elucidating environmental chain scission processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2025.212 | DOI Listing |