A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Standardizing a microbiome pipeline for body fluid identification from complex crime scene stains. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in next-generation sequencing have opened up new possibilities for applying the human microbiome in various fields, including forensics. Researchers have capitalized on the site-specific microbial communities found in different parts of the body to identify body fluids from biological evidence. Despite promising results, microbiome-based methods have not been integrated into forensic practice due to the lack of standardized protocols and systematic testing of methods on forensically relevant samples. Our study addresses critical decisions in establishing these protocols, focusing on bioinformatics choices and the use of machine learning to present microbiome results in case reports for forensically relevant and challenging samples. In our study, we propose using operational taxonomic units (OTUs) for read data processing and generating heterogeneous training data sets for training a random forest classifier. We incorporated six forensically relevant classes: saliva, semen, skin from hand, penile skin, urine, and vaginal/menstrual fluid, and our classifier achieved a high weighted average F1 score of 0.89. Systematic testing on mock forensic samples, including mixed-source samples and underwear, revealed reliable detection of at least one component of the mixture and the identification of vaginal fluid from underwear substrates. Additionally, when investigating the sexually shared microbiome (sexome) of heterosexual couples, our classifier could potentially infer the nature of sexual activity. We therefore highlight the value of the sexome for assessing the nature of sexual activities in forensic investigations while delineating areas that warrant further research.IMPORTANCEMicrobiome-based analyses combined with machine learning offer potential avenues for use in forensic science and other applied fields, yet standardized protocols remain lacking. Moreover, machine learning classifiers have shown promise for predicting body sites in forensics, but they have not been systematically evaluated on complex mixed-source samples. Our study addresses key decisions for establishing standardized protocols and, to our knowledge, is the first to report classification results from uncontrolled mixed-source samples, including sexome (sexually shared microbiome) samples. In our study, we explore both the strengths and limitations of classifying the mixed-source samples while also providing options for tackling the limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093949PMC
http://dx.doi.org/10.1128/aem.01871-24DOI Listing

Publication Analysis

Top Keywords

samples study
16
mixed-source samples
16
standardized protocols
12
forensically relevant
12
machine learning
12
systematic testing
8
samples
8
study addresses
8
decisions establishing
8
samples including
8

Similar Publications