98%
921
2 minutes
20
Background: T2-weighted images are a critical component of prostate magnetic resonance imaging (MRI), and it would be useful to automatically assess image quality (IQ) on a patient-specific basis without radiologist oversight.
Methods: This retrospective study comprised 1,412 axial T2-weighted prostate scans. Four experienced uroradiologists graded IQ using a 0-to-3 scale (0 = uninterpretable; 1 = marginally interpretable; 2 = adequately diagnostic; 3 = more than adequately diagnostic), binarized into nondiagnostic (IQ0 or IQ1), requiring rescanning, and diagnostic (IQ2 or IQ3), not requiring rescanning. The deep learning (DL) model was trained on 1,006 scans; 203 other scans were used for validation of multiple convolutional neural networks; the remaining 203 exams were used as a test set. 3D-DenseNet_169 was chosen among 11 models based on multiple evaluation criteria. The rescan predictions were compared to the number of rescans performed on a subset of 174 exams.
Results: The model accurately predicts radiologist IQ scores (Cohen κ = 0.658), similar to the human inter-rater reliability (κ = 0.688-0.791). The model also predicts rescanning necessity similarly to radiologists: model κ = 0.537; reviewer κ = 0.577-0.703. The rescan model prediction area under the curve was 0.867.
Conclusion: The DL model showed a strong ability to differentiate diagnostic from nondiagnostic axial T2-weighted prostate images, accurately mimicking expert radiologists' IQ scores. Using the model, the clinical unnecessary rescan rate could be reduced from over 50% to less than 30%.
Relevance Statement: DL assessment of T2-weighted prostate MRI scans can accurately assess IQ, determining the need to repeat inadequate scans as well as avoiding repeat scans of those with adequate diagnostic quality, resulting in reduced unnecessary rescanning.
Key Points: Artificial intelligence assessment of prostate MRI T2-weighted image quality can improve exam time management. The model showed over 75% accuracy in assessing prostate MRI T2-weighted image quality. Expert radiologists have a substantial agreement in evaluating prostate MRI T2-weighted image quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040773 | PMC |
http://dx.doi.org/10.1186/s41747-025-00584-z | DOI Listing |
MAGMA
September 2025
Department of Medical Imaging, (766), Radboud University Medical Center, Geert Grooteplein 10Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.
Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.
World J Urol
September 2025
Bichat Claude Bernard Hospital, Public Assistance of Paris Hospitals, Paris, France.
Purpose: Screening and diagnosing ISUP ≥ 2 prostate cancer is challenging. This study aimed to determine whether canine detection could be beneficial addition to the ISUP ≥ 2 prostate cancer diagnostic protocol by creating a decision-making algorithm for men with suspected prostate cancer.
Methods: We conducted a prospective study at two urology institutions and a French veterinary school, including men with a suspicion of prostate cancer from November to April 2023, which were divided into two groups according to their prostate biopsy results.
Eur Urol
September 2025
Hulunbuir People's Hospital, Hulunbuir, Inner Mongolia Autonomous Region, China.
Comput Methods Programs Biomed
August 2025
The Institute of Cancer Research, London, UK. Electronic address:
Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.
View Article and Find Full Text PDFJAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDF