A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. | LitMetric

Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function.

Antioxidants (Basel)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Firenze, Italy.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and antioxidants, induces fibrinogen oxidation, significantly altering its structure and function. This narrative review synthesizes findings from , , and clinical studies, emphasizing the impact of fibrinogen oxidation on clot formation, architecture, and degradation. Oxidative modifications result in denser fibrin clots with thinner fibers, reduced permeability, and heightened resistance to fibrinolysis. These structural changes exacerbate prothrombotic conditions in cardiovascular diseases, diabetes, chronic inflammatory disorders and cancer. In contrast, "low-dose" oxidative stress may elicit protective adaptations in fibrinogen, preserving its function. The review also highlights discrepancies in experimental findings due to variability in oxidation protocols and patient conditions. Understanding the interplay between oxidation and fibrinogen function could unveil therapeutic strategies targeting oxidative stress. Antioxidant therapies or selective inhibitors of detrimental oxidation hold potential for mitigating thrombotic risks. However, further research is essential to pinpoint specific fibrinogen oxidation sites, clarify their roles in clot dynamics, and bridge the gap between basic research and clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024030PMC
http://dx.doi.org/10.3390/antiox14040390DOI Listing

Publication Analysis

Top Keywords

fibrinogen oxidation
16
oxidative stress
12
fibrinogen
8
structure function
8
oxidation
6
oxidation thrombosis
4
thrombosis shaping
4
shaping structure
4
function
4
function fibrinogen
4

Similar Publications