Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The availability of public metaproteomics, metagenomics and metatranscriptomics data in public resources such as MGnify (for metagenomics/metatranscriptomics) and the PRIDE database (for metaproteomics), continues to increase. When these omics techniques are applied to the same samples, their integration offers new opportunities to understand the structure (metagenome) and functional expression (metatranscriptome and metaproteome) of the microbiome. Here, we describe a pilot study aimed at integrating public multi-meta-omics datasets from studies based on human gut and marine hatchery samples. Reference search databases (search DBs) were built using assembled metagenomic (and metatranscriptomic, where available) sequence data followed by de novo gene calling, using both data from the same sampling event and from independent samples. The resulting protein sets were evaluated for their utility in metaproteomics analysis. In agreement with previous studies, the highest number of peptide identifications was generally obtained when using search DBs created from the same samples. Data integration of the multi-omics results was performed in MGnify. For that purpose, the MGnify website was extended to enable the visualisation of the resulting peptide/protein information from three reanalysed metaproteomics datasets. A workflow (https://github.com/PRIDE-reanalysis/MetaPUF) has been developed allowing researchers to perform equivalent data integration, using paired multi-omics datasets. This is the first time that a data integration approach for multi-omics datasets has been implemented from public data available in the world-leading MGnify and PRIDE resources.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.202500002DOI Listing

Publication Analysis

Top Keywords

data integration
12
metagenomics metatranscriptomics
8
data
8
search dbs
8
multi-omics datasets
8
metaproteomics
5
approach integrate
4
integrate metagenomics
4
metatranscriptomics metaproteomics
4
metaproteomics data
4

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

Introduction: In various countries, an increasing proportion of general practitioner (GP) referrals is returned by hospitals. We aimed to uncover the causes and consequences of referral returns from the perspective of GP liaisons.

Methods: Individual interviews with 20 GP liaison officers from various departments in Southern Denmark, serving 1.

View Article and Find Full Text PDF

Isoform-specific expression patterns have been linked to stress-related psychiatric disorders such as major depressive disorder (MDD). To further explore their involvement, we constructed co-expression networks using total gene expression (TE) and isoform ratio (IR) data from affected ( = 210, 81% with depressive symptoms) and unaffected ( = 95) individuals. Networks were validated using advanced graph generation methods.

View Article and Find Full Text PDF

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Background: Addictive disorders remain a global problem, affecting health, society and the economy. The etiopathogenesis of addictions, which have a multifactorial nature, is poorly understood, making it difficult to develop personalized treatment approaches. Of particular interest is the gene, which regulates serotonergic transmission.

View Article and Find Full Text PDF