Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With over 3000 representatives, the monoterpene indole alkaloids (MIAs) class is among the most diverse families of plant natural products. The MS/MS spectral space exploration of these complex compounds using chemoinformatic and computational mass spectrometry tools offers a valuable opportunity to extract and share chemical insights from this emblematic family of natural products (NPs). In this work, we first present a substantially updated version of the MIADB, a database now containing 422 MS/MS spectra of MIAs that has been uploaded to the GNPS library versus 172 initial entries. We then introduce an innovative workflow that leverages hundreds of fragmentation spectra to support the FAIRification, extraction and dissemination of chemical knowledge. This workflow aims at the extraction of spectral patterns matching finely defined MIA skeletons. These extracted signatures can then be queried against complex biological extract datasets using MassQL. By applying this strategy to an LC-MS/MS dataset of 75 plant extracts, our results demonstrated the efficiency of this approach in identifying the diversity of MIA skeletons present in the analyzed samples. Additionally, our work enabled the digitization of structural data for diverse MIA skeletons by converting them into machine-readable formats and thereby enhancing their dissemination for the scientific community.Scientific contribution A comprehensive investigation of the monoterpene indole alkaloid chemical space, aiming to highlight skeleton-dependent fragmentation similarity trends and to generate valuable spectrometric signatures that could be used as queries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12039057 | PMC |
http://dx.doi.org/10.1186/s13321-025-01009-0 | DOI Listing |