98%
921
2 minutes
20
During developmental transitions, cells frequently remodel metabolic networks, including changing reliance on metabolites such as glucose and glutamine to fuel intracellular metabolic pathways. Here we used embryonic stem (ES) cells as a model system to understand how changes in intracellular metabolic networks that characterize cell state transitions affect reliance on exogenous nutrients. We find that ES cells in the naive ground state of pluripotency increase uptake and reliance on exogenous pyruvate through the monocarboxylate transporter MCT1. Naive ES cells, but not their more committed counterparts, rely on exogenous pyruvate even when other sources of pyruvate (glucose, lactate) are abundant. Pyruvate dependence in naive ES cells is a consequence of their elevated mitochondrial pyruvate consumption at the expense of cytosolic NAD regeneration. Indeed, across a range of cell types, increased mitochondrial pyruvate consumption is sufficient to drive demand for extracellular pyruvate. Accordingly, restoring cytosolic NAD regeneration allows naive ES cells to tolerate pyruvate depletion in diverse nutrient microenvironments. Together, these data demonstrate that intracellular metabolic gradients dictate uptake and reliance on exogenous pyruvate and highlight mitochondrial pyruvate metabolism as a metabolic vulnerability of naive ES cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197826 | PMC |
http://dx.doi.org/10.1038/s42255-025-01289-8 | DOI Listing |
Angiogenesis
September 2025
Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.
View Article and Find Full Text PDFMol Biol Rep
September 2025
School of Pharmacy, Heilongjiang University of Chinese Medicine, NO 24 Heping Road, 150040, Harbin, P. R. China.
Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
Cardiovascular diseases (CVDs) are a group of conditions that significantly affect human health and are among the leading causes of death and disability worldwide. Clinical trials and basic research have demonstrated that inflammation plays a pivotal role in the development of CVDs. The inflammasome is a critical component of the innate immune system, involved in various inflammatory responses to pathogens and tissue damage.
View Article and Find Full Text PDFElife
September 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, United States.
The obligate intracellular bacterium alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence that cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.
Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.