A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Statistical optimization of process variables for improved poly(ethylene terephthalate) plastic degradation by a rhizospheric bacterial consortium. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current study focuses on the poly(ethylene terephthalate) (PET) powder degradation potential of a rhizobacterial consortium screened from the rhizosphere of plants growing at plastic-polluted sites. The rhizobacterial consortium were screened and ability of PET powder degradation was studied up to 18 days. For observing the efficiency of degradation, all three rhizobacterial strains with highest percentage of degradation were combined to formulate the consortium. The Response Surface Methodology (RSM) was used to optimize the process variables. The combinations demonstrating highest weight reduction percentage for PET were selected for further degradation studies. The changes in the structure and surfaces that occurred after biodegradation on the plastic were observed through SEM and FTIR analysis. The obtained results showed the disappearance and elongation of the peak, signifying that the rhizobacterial consortium could modify the PET plastic. The weight reduction percentage of PET powder (300 µm) was 71.12% at optimized conditions (29.8 °C, 7.02 pH and 1 g/L carbon source). The mathematical model developed through RSM is found to be significant (P < 0.05), and optimization and validation experiments were also well correlated for the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037729PMC
http://dx.doi.org/10.1038/s41598-025-88084-3DOI Listing

Publication Analysis

Top Keywords

pet powder
12
rhizobacterial consortium
12
process variables
8
polyethylene terephthalate
8
powder degradation
8
consortium screened
8
weight reduction
8
reduction percentage
8
percentage pet
8
degradation
6

Similar Publications