Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The skeleton-based action recognition networks often focus on extracting features such as joints from samples, while neglecting the semantic relationships inherent in actions, which also contain valuable information. To address the lack of utilization of semantic information, this paper proposes a semantics-assisted training graph convolution network (SAT-GCN). By dividing the features outputted by the skeleton encoder into four parts and contrasting them with the text features generated by the text encoder, the obtained contrastive loss is used to guide the overall network training. This approach effectively improves recognition accuracy while reducing the number of model parameters. In addition, angle features are incorporated into the skeleton model input to aid in classifying similar actions. Finally, a multi-feature skeleton encoder is designed to separately extract features such as joints, bones, and angles. These extracted features are then integrated through feature fusion. The fused features are then passed through three graph convolution blocks before being fed into fully connected layers for classification. Extensive experiments were conducted on three large-scale datasets, NTU RGB + D 60, NTU RGB + D 120, and NW-UCLA to validate the performance of the proposed model. The results show that the SAT-GCN outperforms others in terms of both accuracy and number of parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946682PMC
http://dx.doi.org/10.3390/s25061841DOI Listing

Publication Analysis

Top Keywords

graph convolution
12
semantics-assisted training
8
training graph
8
convolution network
8
skeleton-based action
8
action recognition
8
features joints
8
skeleton encoder
8
ntu rgb
8
features
7

Similar Publications

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.

View Article and Find Full Text PDF

Directed message passing neural networks enhanced graph convolutional learning for accurate polymer density prediction.

J Chem Phys

September 2025

National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.

Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Predicting nucleic acid binding sites by attention map-guided graph convolutional network with protein language embeddings and physicochemical information.

Brief Bioinform

August 2025

School of Information and Artificial Intelligence, Anhui Agricultural University, 130 Changjiang Road, Shushan District, Hefei, Anhui 230036, China.

Protein-nucleic acid binding sites play a crucial role in biological processes such as gene expression, signal transduction, replication, and transcription. In recent years, with the development of artificial intelligence, protein language models, graph neural networks, and transformer architectures have been adopted to develop both structure-based and sequence-based predictive models. Structure-based methods benefit from the spatial relationship between residues and have shown promising performance.

View Article and Find Full Text PDF