98%
921
2 minutes
20
The skeleton-based action recognition networks often focus on extracting features such as joints from samples, while neglecting the semantic relationships inherent in actions, which also contain valuable information. To address the lack of utilization of semantic information, this paper proposes a semantics-assisted training graph convolution network (SAT-GCN). By dividing the features outputted by the skeleton encoder into four parts and contrasting them with the text features generated by the text encoder, the obtained contrastive loss is used to guide the overall network training. This approach effectively improves recognition accuracy while reducing the number of model parameters. In addition, angle features are incorporated into the skeleton model input to aid in classifying similar actions. Finally, a multi-feature skeleton encoder is designed to separately extract features such as joints, bones, and angles. These extracted features are then integrated through feature fusion. The fused features are then passed through three graph convolution blocks before being fed into fully connected layers for classification. Extensive experiments were conducted on three large-scale datasets, NTU RGB + D 60, NTU RGB + D 120, and NW-UCLA to validate the performance of the proposed model. The results show that the SAT-GCN outperforms others in terms of both accuracy and number of parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946682 | PMC |
http://dx.doi.org/10.3390/s25061841 | DOI Listing |
Med Eng Phys
October 2025
College of Basic Medical Science, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Software, Shandong University, Jinan 250101, Shandong, China.
Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.
View Article and Find Full Text PDFJ Chem Phys
September 2025
National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.
Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).
View Article and Find Full Text PDFBrief Bioinform
August 2025
College of Pharmacy, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, P. R. China.
Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.
View Article and Find Full Text PDFBrief Bioinform
August 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, 130 Changjiang Road, Shushan District, Hefei, Anhui 230036, China.
Protein-nucleic acid binding sites play a crucial role in biological processes such as gene expression, signal transduction, replication, and transcription. In recent years, with the development of artificial intelligence, protein language models, graph neural networks, and transformer architectures have been adopted to develop both structure-based and sequence-based predictive models. Structure-based methods benefit from the spatial relationship between residues and have shown promising performance.
View Article and Find Full Text PDF