A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid development of smart wearable devices has significantly advanced noninvasive, continuous health monitoring, enabling real-time collection of vital biosignals. Electrocardiographic imaging (ECGI), a noninvasive technique that reconstructs transmembrane potential (TMP) from body surface potential, has emerged as a promising method for reflecting cardiac electrical activity. However, the ECG inverse problem's inherent instability has hindered its practical application. To address this, we introduce a novel Priori-to-Attention Network (P2AN) that enhances the stability of ECGI solutions. By leveraging the one-dimensional nature of electrical signals and the body's electrical propagation properties, P2AN uses small-scale convolutions for attention computation, integrating a priori physiological knowledge via cross-attention mechanisms. This approach eliminates the need for clinical TMP measurements and improves solution accuracy through normalization constraints. We evaluate the method's effectiveness in diagnosing myocardial ischemia and ventricular hypertrophy, demonstrating significant improvements in TMP reconstruction and lesion localization. Moreover, P2AN exhibits high robustness in noisy environments, making it highly suitable for integration with wearable electrocardiographic clothing. By improving spatiotemporal accuracy and noise resilience, P2AN offers a promising solution for noninvasive, real-time cardiovascular monitoring using AI-powered wearable devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945369PMC
http://dx.doi.org/10.3390/s25061810DOI Listing

Publication Analysis

Top Keywords

electrocardiographic imaging
8
priori-to-attention network
8
network p2an
8
health monitoring
8
wearable devices
8
p2an
5
ai-powered noninvasive
4
noninvasive electrocardiographic
4
imaging priori-to-attention
4
wearable
4

Similar Publications